One-Face Shortest Disjoint Paths with a Deviation Terminal

Yusuke Kobayashi, Tatsuya Terao Kyoto University

Outline

- Preliminaries
- Disjoint Paths
- Shortest Disjoint Paths
- One-Face Shortest Disjoint Paths
- Result
- One-Face Shortest Disjoint Paths with a Deviation Terminal
- Idea
-Bijection between $(A+B)$-Paths and Pairing of Terminals
- Conclusion

Outline

- Preliminaries
- Disjoint Paths
- Shortest Disjoint Paths
- One-Face Shortest Disjoint Paths
- Result
- One-Face Shortest Disjoint Paths with a Deviation Terminal
- Idea
-Bijection between $(A+B)$-Paths and Pairing of Terminals
- Conclusion

Disjoint Paths Problem

Input : vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$

Disjoint Paths Problem

Input: vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$
Find : vertex-disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$

■ Many Applications
ex : VLSI-design, network routing (1980s)

Disjoint Paths Problem

Input : vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$
Find : vertex-disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$

- Many Applications
ex: VLSI-design, network routing (1980s)

	Directed	Undirected
$\boldsymbol{k}:$ fixed	NP-hard (Fortune et al. 1980)	Polytime (Robertson \& Seymour 1995)
\boldsymbol{k} : general	NP-hard (Karp 1975)	NP-hard (Karp 1975)

Shortest Disjoint Paths Problem

Input : vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$
Find : vertex-disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$ minimizing sum of their length

- natural optimization version
- k : fixed, undirected

polynomial solvability is widely open

Sum of their length: $3+2+2=7$

Polynomially solvable cases (1)

$\square \boldsymbol{k}=2$: Randomized Polytime algorithm

(Björklund \& Husfeldt 2014)

Permanent modulo 4
$\square \boldsymbol{k}=\mathbf{2}$, cubic, planar : Deterministic Polytime algorithm (Björklund \& Husfeldt 2018)

Pfaffian

Idea : algebraic approach via polynomial matrix

Polynomially solvable cases (2)

planar graph, terminals satisfy certain conditions

■ s_{1}, \ldots, s_{k} are on one face and
t_{1}, \ldots, t_{k} are on another face
(Colin de Verdière \& Schrijver, 2011)

■ $\boldsymbol{k}=2$, terminals are on at most 2 faces
(Kobayashi \& Sommer, 2010)

■ $s_{1}, t_{1}, \ldots, s_{k}, t_{k}$ are on one face in this order (Borradile et al. 2015)

■ all the terminals are on one face
(Datta et al. 2018)

One-Face Shortest Disjoint Paths Problem

(Datta et al. 2018)
Input : planar graph, vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ all the terminals are on the same face
Find : vertex-disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$ minimizing sum of their length

Algorithm for One-Face Shortest Disjoint Paths

(Datta et al. 2018)

Obs.

An expansion term of determinant of adjacency matrix corresponds to a cycle cover of directed graph

Algorithm for One-Face Shortest Disjoint Paths

(Datta et al. 2018)

Obs.

An expansion term of determinant of adjacency matrix corresponds to a cycle cover of directed graph

Algorithm for One-Face Shortest Disjoint Paths

(Datta et al. 2018)

Algorithm for One-Face Shortest Disjoint Paths

(Datta et al. 2018)

Ex. If det $=3 x^{5}+4 x^{7}+\cdots$

- \#(disjoint paths of total length 5$)=3$
- \#(disjoint paths of total length 7$)=4$

Determinant \Leftrightarrow cycle covers

Algorithm for One-Face Shortest Disjoint Paths

(Datta et al. 2018)

Determinant \Leftrightarrow cycle covers

Algorithm for One-Face Shortest Disjoint Paths

(Datta et al. 2018)

Determinant \Leftrightarrow cycle covers

Algorithm for One-Face Shortest Disjoint Paths

(Datta et al. 2018)

Determinant \Leftrightarrow cycle covers

Algorithm for One-Face Shortest Disjoint Paths

(Datta et al. 2018)

The lowest degree term of $\operatorname{det} A_{2}[x]-\operatorname{det} A_{1}[x]$ corresponds to shortest disjoint paths

Outline

- Preliminaries
- Disjoint Paths
- Shortest Disjoint Paths
- One-Face Shortest Disjoint Paths
- Result
- One-Face Shortest Disjoint Paths with a Deviation Terminal
- Idea
-Bijection between $(A+B)$-Paths and Pairing of Terminals
- Conclusion

One-Face Shortest Disjoint Paths with a Deviation Terminal

Input : planar graph, vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ all the terminals except one are on the same face
Find : vertex-disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$ minimizing sum of their length

Our Contribution

Thm.

k : fixed
One-Face Shortest Disjoint Paths Problem with a Deviation Terminal can be solved by Randomized Poly.-time Algorithm

Significance

- extend the case by Datta et al. 2018

Technique

- One-Face Shortest Disjoint Paths [Datta et al. 2018]
- Shortest Disjoint $(A+B)$-Paths [Hirai \& Namba 2018]
- ($A+B$)-Paths \Rightarrow Pairing of Terminals (Insight on combinatorial properties : Related to Catalan Number)

Shortest Disjoint $(A+B)$-Paths Problem (Hirai \& Namba 2018)

Input : disjoint terminal sets $A, B \subseteq V$ of even size

Shortest Disjoint $(A+B)$-Paths Problem

(Hirai \& Namba 2018)
Input : disjoint terminal sets $A, B \subseteq V$ of even size
Find : $\tau=|\mathrm{A}| / 2+|\mathrm{B}| / 2$ vertex-disjoint paths with endpoints both in A or both in B minimizing sum of their length

Thm.

A Polynomial corresponding to all disjoint $(A+B)$-paths
can be computed in poly.-time.

Hafnian modulo $2^{\tau+1}$

Our Algorithm

Our Algorithm

Our Algorithm

Our Algorithm

Our Algorithm

Our Algorithm

extra term $=$ haf $S_{1}[x]$

The lowest degree term of haf $S_{2}[x]$ - haf $S_{1}[x]$ corresponds to shortest disjoint paths

Our Algorithm

$$
\text { extra term }=\text { haf } S_{1}[x]
$$

Bijection between (A, B)-Partitions and Pairing of Terminals

Bijection between (A, B)-Partitions and Pairing of Terminals

Bijection between (A, B)-Partitions and Pairing of Terminals

Bijection between (A,B)-Partitions and Pairing of Terminals

Outline

- Preliminaries
- Disjoint Paths
- Shortest Disjoint Paths
- One-Face Shortest Disjoint Paths
- Result
- One-Face Shortest Disjoint Paths with a Deviation Terminal
- Idea
-Bijection between $(A+B)$-Paths and Pairing of Terminals
- Conclusion

Conclusion

■ introduce One-Face Shortest Disjoint Paths with a Deviation Terminal
\square present Randomized Poly.-time algorithm

- Combination of One-Face Shortest Disjoint Paths and Disjoint ($\boldsymbol{A}+\boldsymbol{B}$)-Paths
- Combinatorial Insight on $(\boldsymbol{A}+\boldsymbol{B})$-Paths and Pairing of Terminals
Q. Deterministic Poly.-time algorithm
Q. All the terminals except two or more are on the same face
Q. The terminals are on two faces

