One-Face Shortest Disjoint Paths with a Deviation Terminal

Yusuke Kobayashi, <u>Tatsuya Terao</u> Kyoto University

ISAAC 2022 @Seoul Dec 20, 2022

<u>Outline</u>

Preliminaries

- Disjoint Paths
- Shortest Disjoint Paths
- One-Face Shortest Disjoint Paths
- Result
 - One-Face Shortest Disjoint Paths with a Deviation Terminal
- <u>Idea</u>
 - -Bijection between (A + B)-Paths and Pairing of Terminals

Conclusion

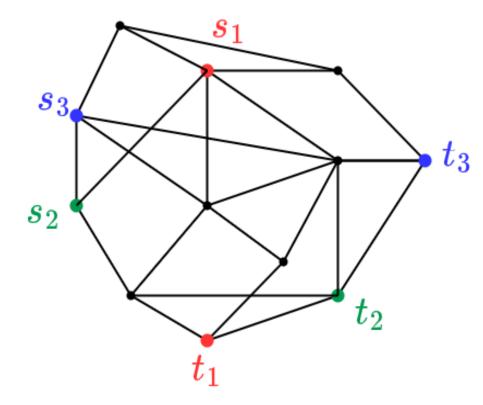
<u>Outline</u>

Preliminaries

- Disjoint Paths
- Shortest Disjoint Paths
- One-Face Shortest Disjoint Paths
- <u>Result</u>
 - One-Face Shortest Disjoint Paths with a Deviation Terminal
- Idea
 - -Bijection between (A + B)-Paths and Pairing of Terminals
- <u>Conclusion</u>

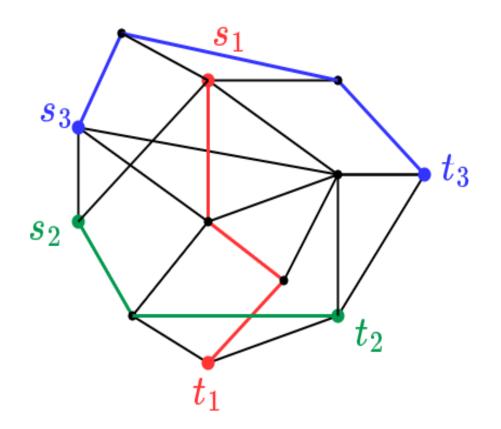
Disjoint Paths Problem

<u>Input</u>: vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$



Disjoint Paths Problem

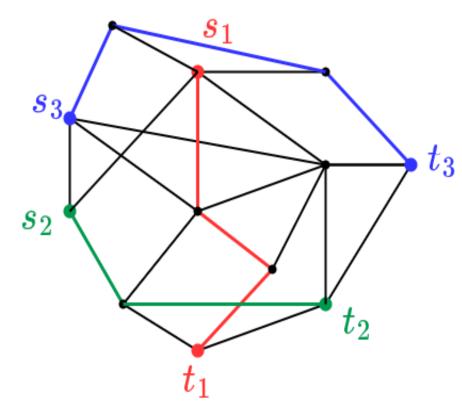
<u>Input</u>: vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$ <u>Find</u>: vertex-disjoint paths $P_1, \ldots, P_k (P_i : s_i \to t_i)$



- Many Applications
 - ex : VLSI-design, network routing (1980s)

Disjoint Paths Problem

<u>Input</u>: vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$ <u>Find</u>: vertex-disjoint paths $P_1, \ldots, P_k (P_i : s_i \to t_i)$

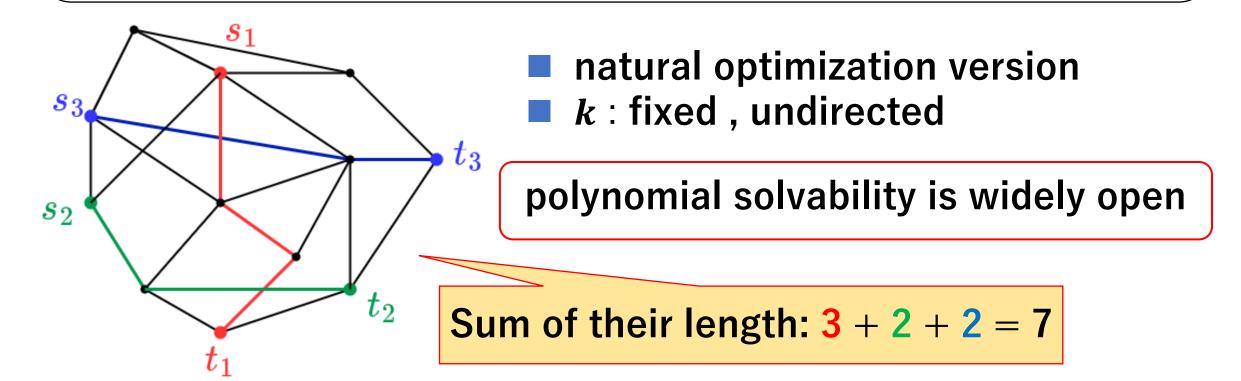


Many Applications ex : VLSI-design, network routing (1980s)

	Directed	Undirected
k: fixed	NP-hard (Fortune et al. 1980)	Polytime (Robertson & Seymour 1995)
k : general	NP-hard (Karp 1975)	NP-hard (Karp 1975)

Shortest Disjoint Paths Problem

 $\begin{array}{ll} \underline{Input} : \text{vertex pairs } (s_1, t_1), \dots, (s_k, t_k) \\ \underline{Find} : \text{vertex-disjoint paths } P_1, \dots, P_k \left(P_i : s_i \rightarrow t_i \right) \\ & \text{minimizing sum of their length} \end{array}$



Polynomially solvable cases (1)

k = 2 : Randomized Polytime algorithm

(Björklund & Husfeldt 2014)

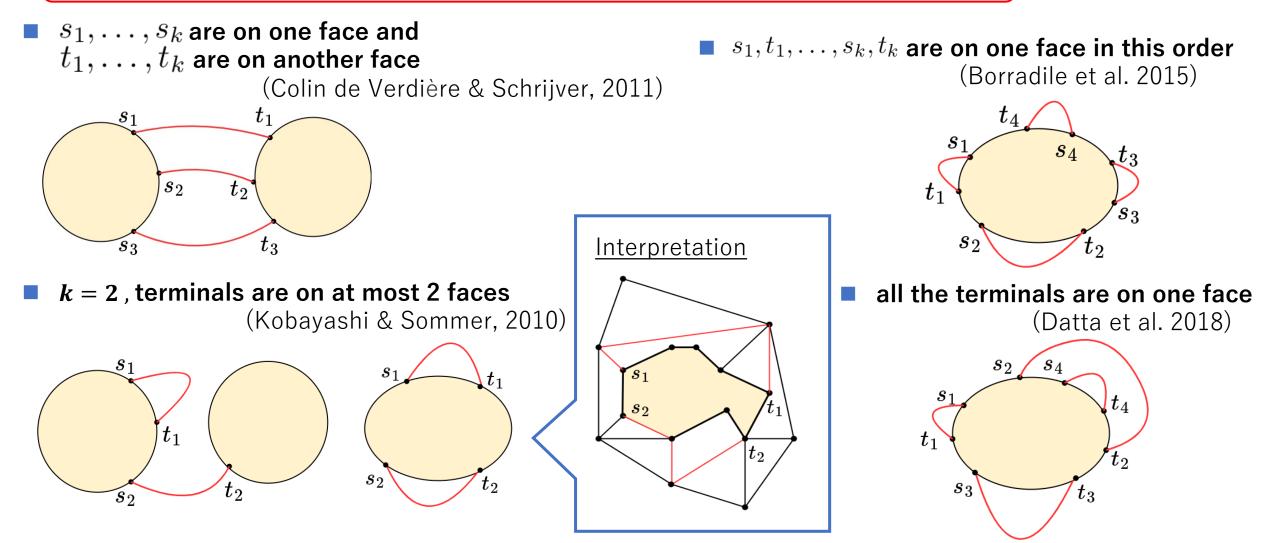
Permanent modulo 4

k = 2, cubic, planar : Deterministic Polytime algorithm (Björklund & Husfeldt 2018)

Idea : algebraic approach via polynomial matrix

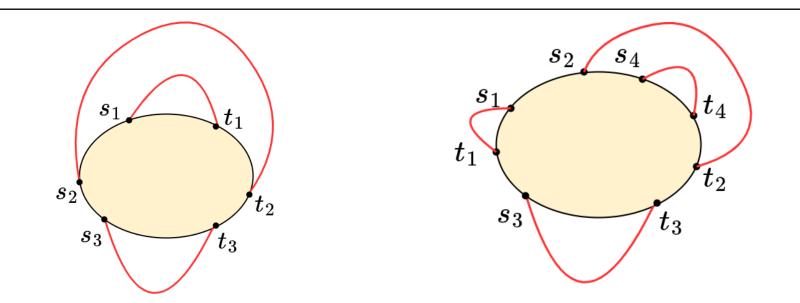
Polynomially solvable cases (2)

planar graph, terminals satisfy certain conditions



One-Face Shortest Disjoint Paths Problem (Datta et al. 2018)

<u>Input</u> : planar graph, vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$ all the terminals are on the same face <u>Find</u> : vertex-disjoint paths $P_1, \ldots, P_k (P_i : s_i \to t_i)$ minimizing sum of their length



(Datta et al. 2018)

<u>Obs.</u>

An expansion term of determinant of adjacency matrix corresponds to a cycle cover of directed graph

$$\det A[x] = \det \begin{bmatrix} 1 & x \\ x & 1 \\ x & 1 \end{bmatrix} \xrightarrow{1 \qquad v_1 \qquad v_2 \qquad v_3 \qquad v_4 \qquad v_4 \qquad v_4 \qquad v_3 \qquad v_4 \qquad v_4 \qquad v_3 \qquad v_5 \qquad v_1 \qquad v_1 \qquad v_1 \qquad v_2 \qquad v_3 \qquad v_5 \qquad v_1 \qquad v_5 \qquad v_1 \qquad v_5 \qquad v_5$$

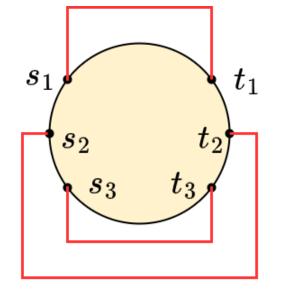
(Datta et al. 2018)

<u>Obs.</u>

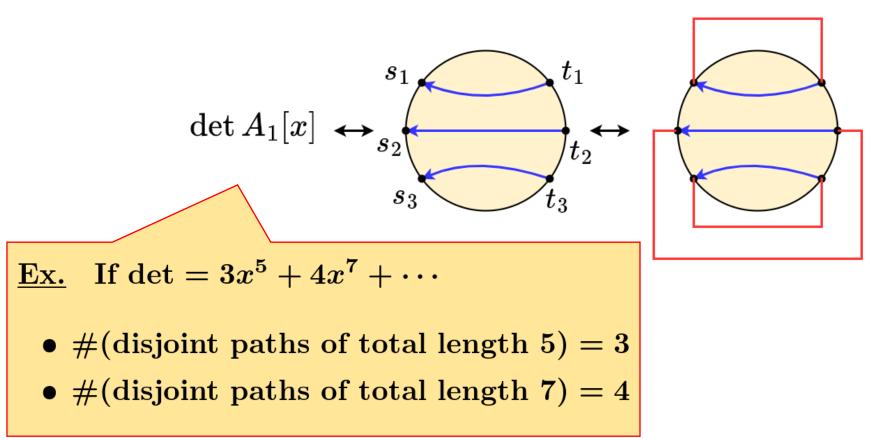
An expansion term of determinant of adjacency matrix corresponds to a cycle cover of directed graph

$$\det A[x] = \det \begin{bmatrix} 1 & x \\ x & 1 \\ x & y_{3} & y_{5} & y_{1} \\ 0 & 1 \\ 1 &$$

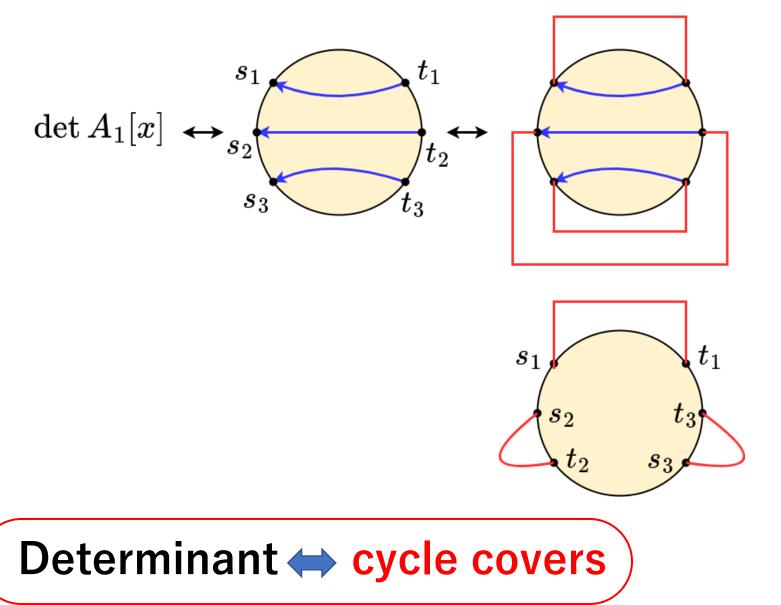
(Datta et al. 2018)



(Datta et al. 2018)

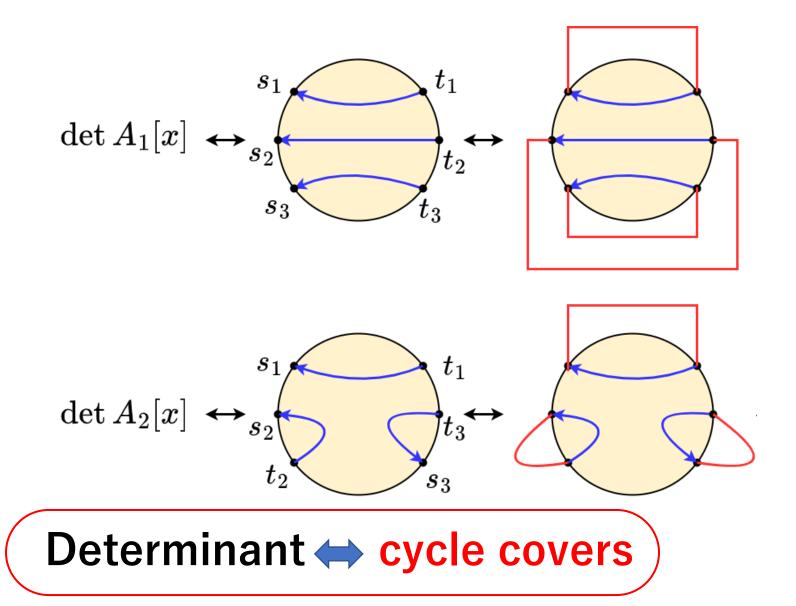


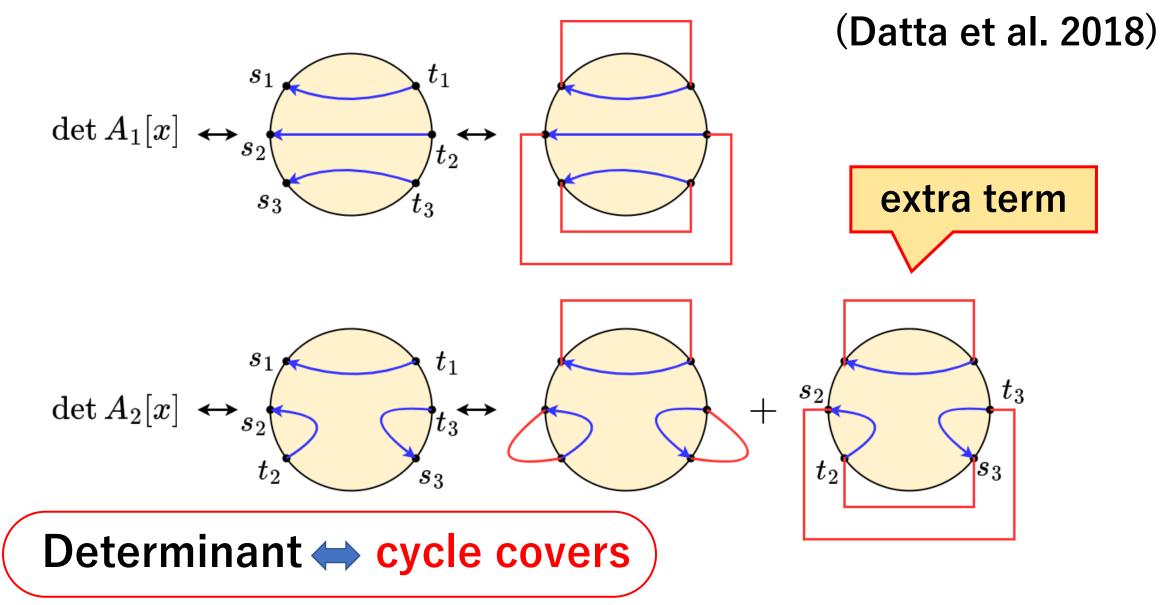
Determinant () cycle covers



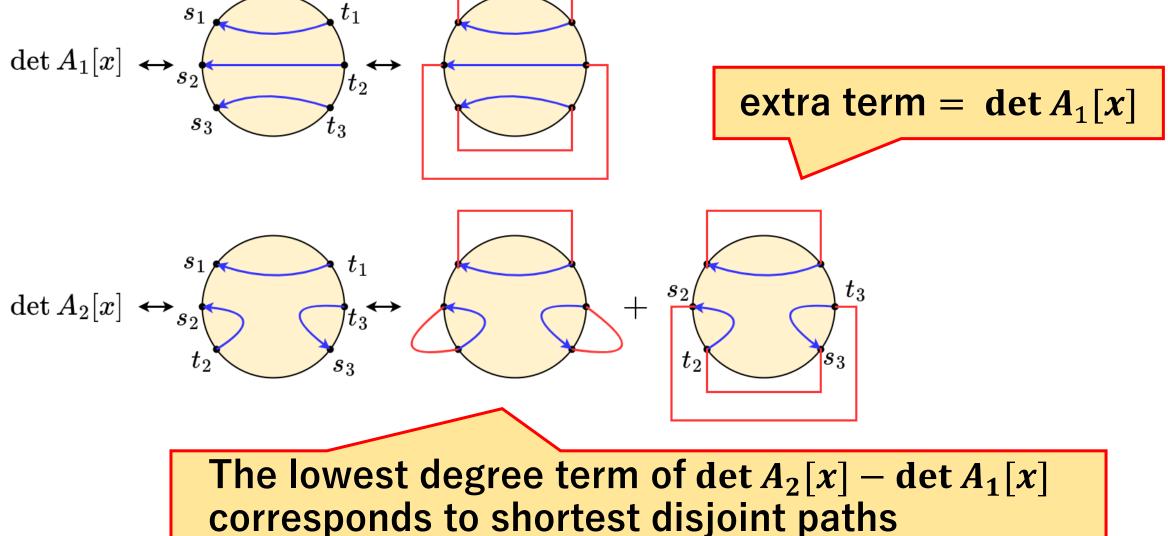
(Datta et al. 2018)

(Datta et al. 2018)





(Datta et al. 2018)



<u>Outline</u>

• Preliminaries

- Disjoint Paths
- Shortest Disjoint Paths
- One-Face Shortest Disjoint Paths

Result

- One-Face Shortest Disjoint Paths with a Deviation Terminal

• <u>Idea</u>

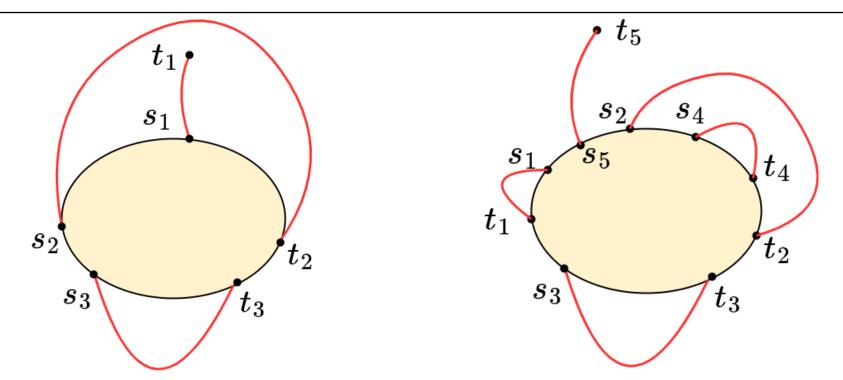
-Bijection between (A + B)-Paths and Pairing of Terminals

<u>Conclusion</u>

One-Face Shortest Disjoint Paths with a Deviation Terminal

<u>Input</u> : planar graph, vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$ all the terminals except one are on the same face <u>Find</u> : vertex-disjoint paths $P_1, \ldots, P_k (P_i : s_i \to t_i)$

minimizing sum of their length



Our Contribution

<u>Thm.</u>

k : fixed

One-Face Shortest Disjoint Paths Problem with a Deviation Terminal can be solved by Randomized Poly.-time Algorithm

Significance

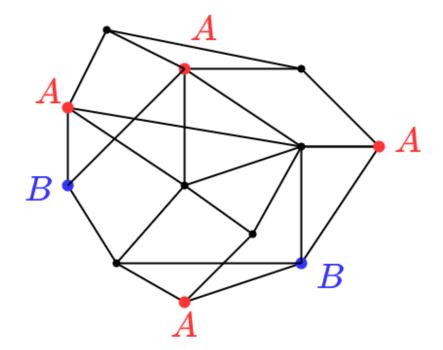
extend the case by Datta et al. 2018

<u>Technique</u>

- One-Face Shortest Disjoint Paths [Datta et al. 2018]
- Shortest Disjoint (*A* + *B*)-Paths [Hirai & Namba 2018]
- (A + B)-Paths Pairing of Terminals
 (Insight on combinatorial properties : Related to Catalan Number)

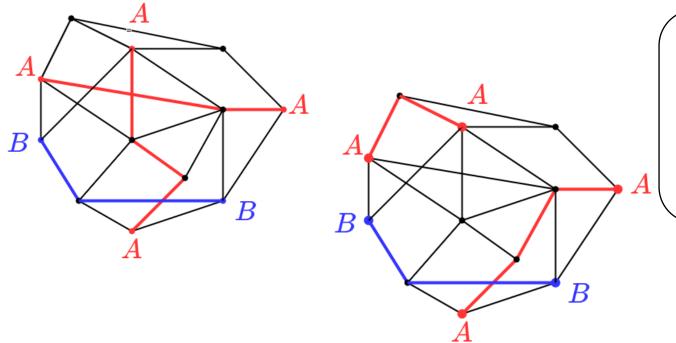
Shortest Disjoint (A + B)-Paths Problem (Hirai & Namba 2018)

<u>Input</u> : disjoint terminal sets $A, B \subseteq V$ of even size



Shortest Disjoint (A + B)-Paths Problem (Hirai & Namba 2018)

<u>Input</u> : disjoint terminal sets $A, B \subseteq V$ of even size <u>Find</u> : $\tau = |A|/2 + |B|/2$ vertex-disjoint paths with endpoints both in A or both in B minimizing sum of their length

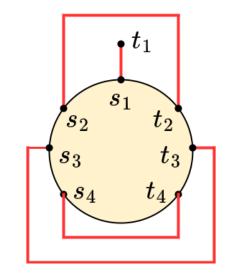


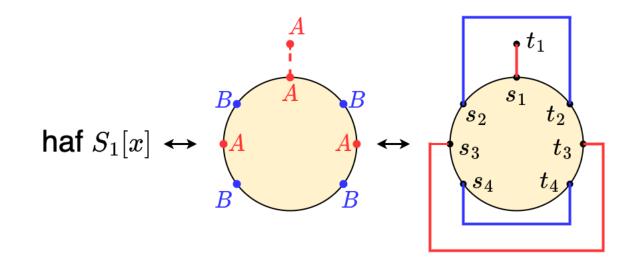
<u>Thm.</u>

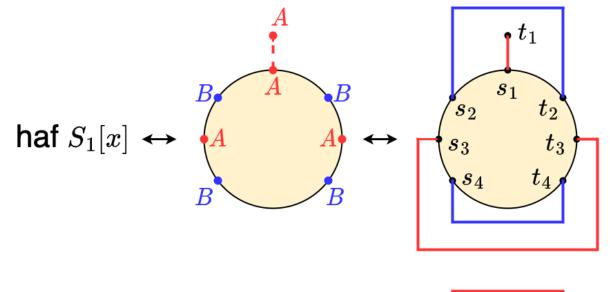
A Polynomial corresponding to all disjoint (A + B)-paths can be computed in poly.-time.

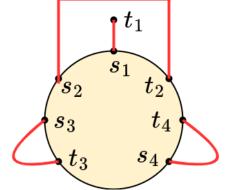
Hafnian modulo $2^{\tau+1}$

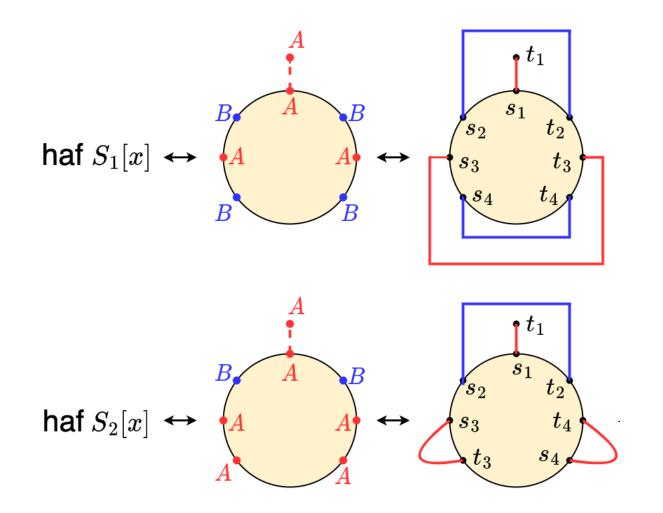
<u>Our Algorithm</u>

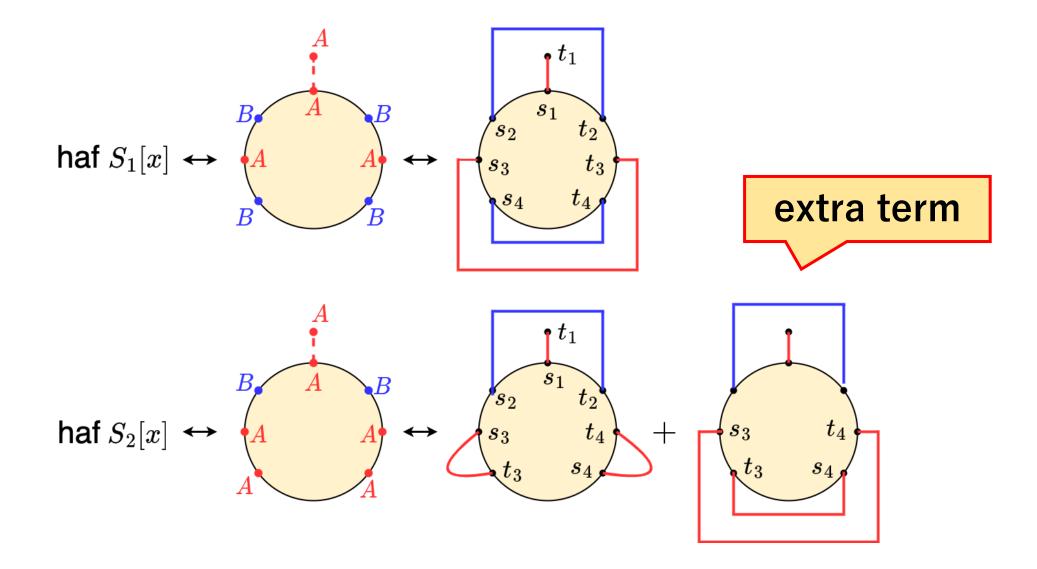


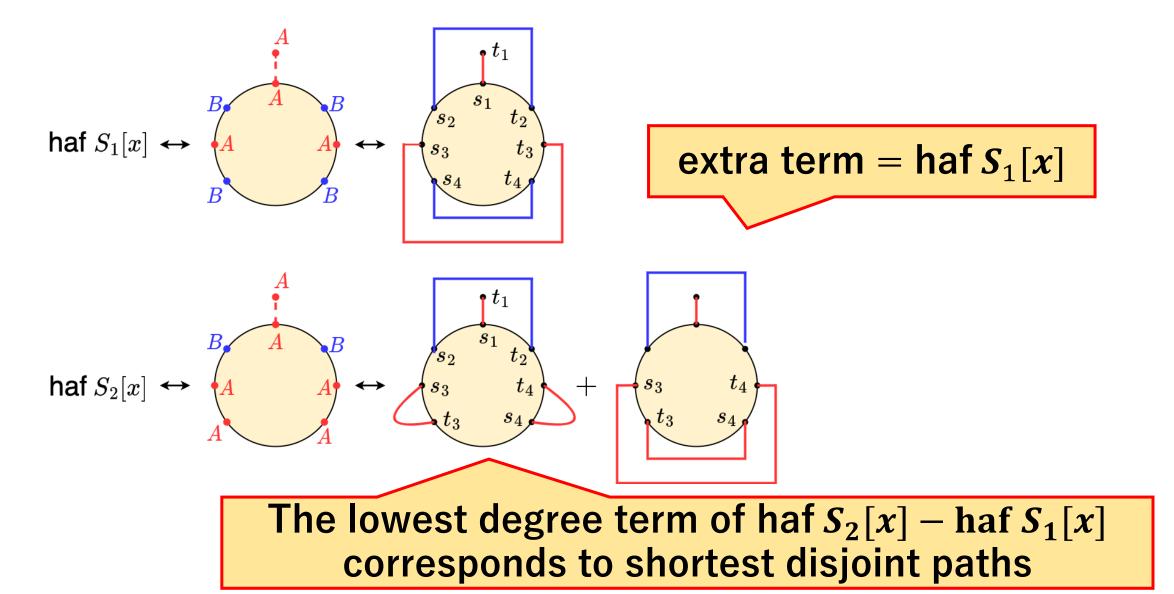


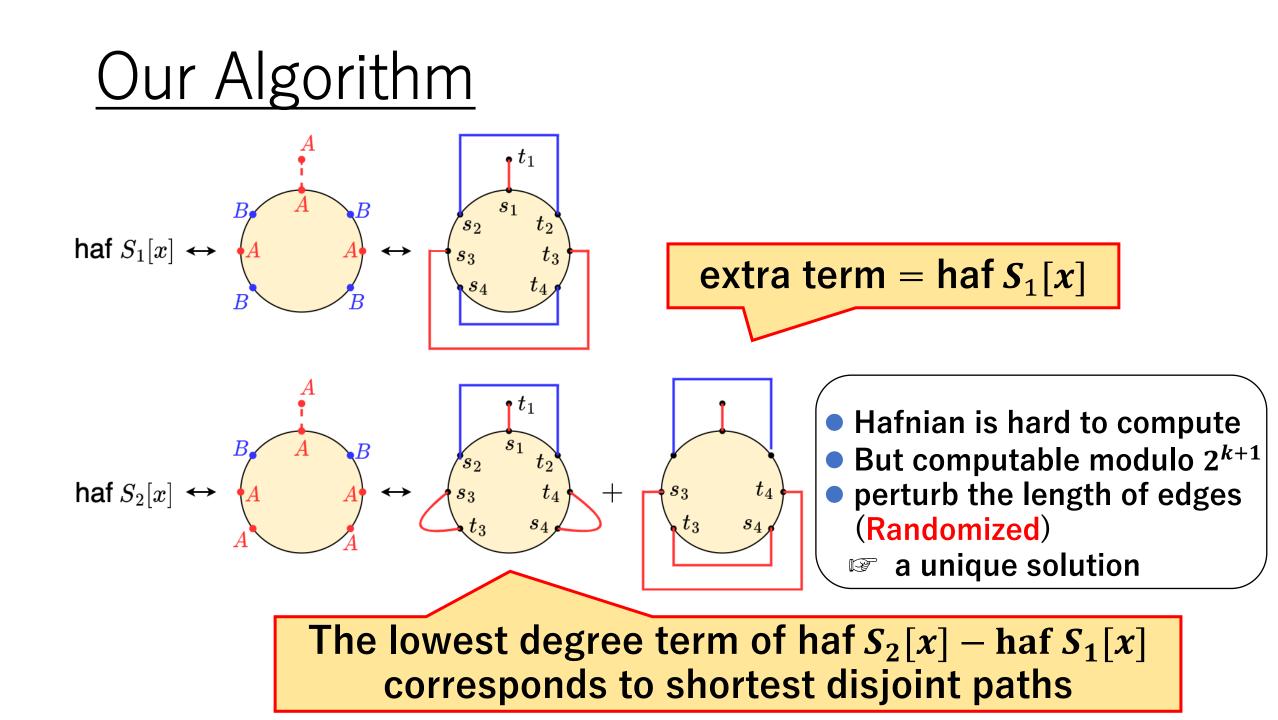


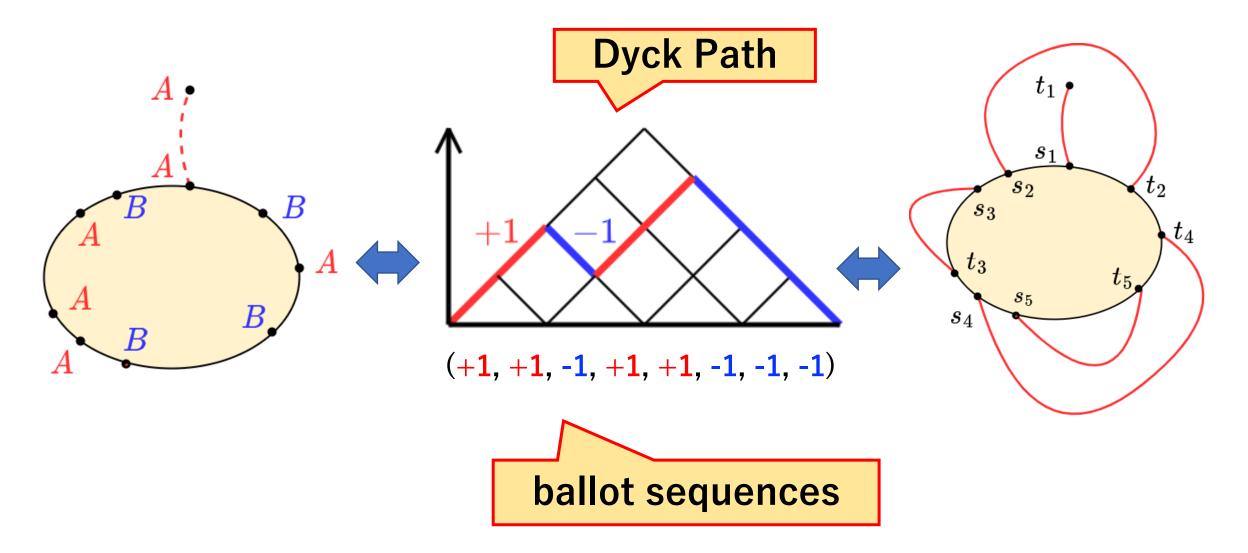


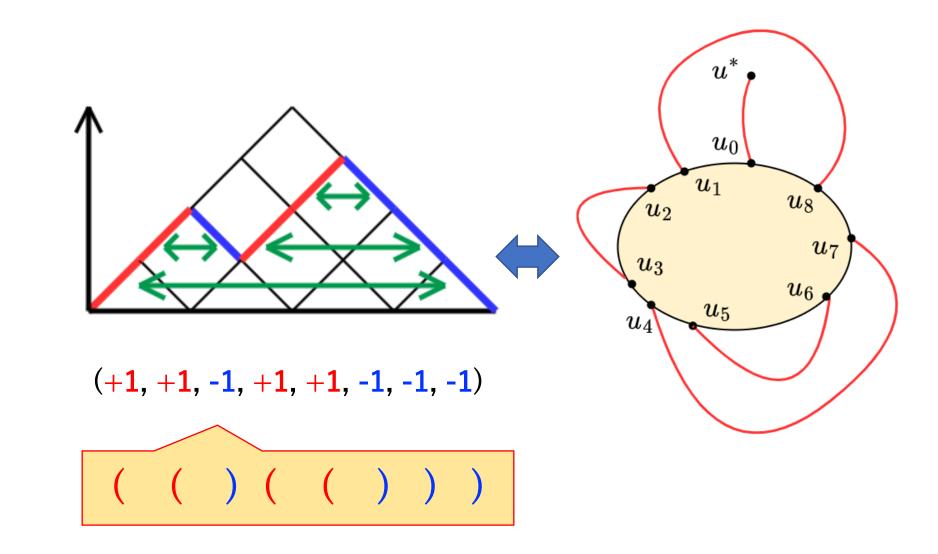


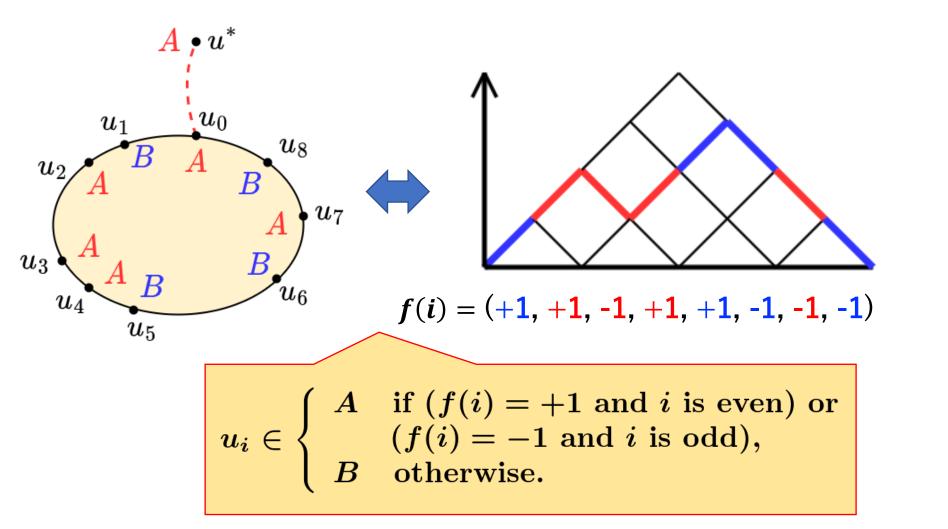


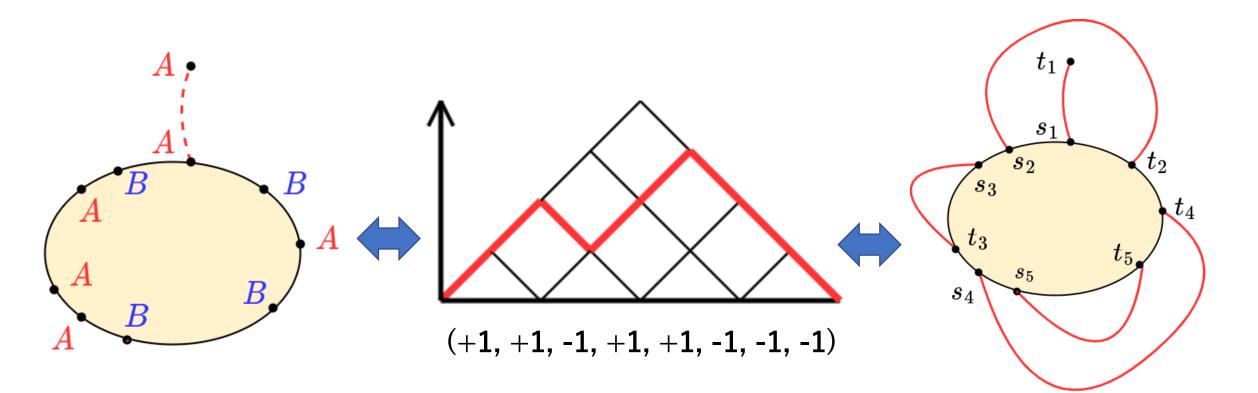












<u>Outline</u>

• <u>Preliminaries</u>

- Disjoint Paths
- Shortest Disjoint Paths
- One-Face Shortest Disjoint Paths
- <u>Result</u>
 - One-Face Shortest Disjoint Paths with a Deviation Terminal
- Idea
 - -Bijection between (A + B)-Paths and Pairing of Terminals

Conclusion

Conclusion

introduce One-Face Shortest Disjoint Paths with a Deviation Terminal
 present Randomized Poly.-time algorithm

Combination of One-Face Shortest Disjoint Paths and Disjoint (A + B)-Paths
 Combinatorial Insight on (A + B)-Paths and Pairing of Terminals

Q. Deterministic Poly.-time algorithm

Q. All the terminals except two or more are on the same face

Q. The terminals are on two faces