Faster Matroid Partition Algorithms

Tatsuya Terao

Kyoto University

ICALP 2023 @Paderborn July 14, 2023

<u>Result</u>

Three fast algorithms for matroid partition

Algorithm 1.
Õ(kn√p) independence queries
Algorithm 2.
Õ(k^{1/3}np + kn) independence queries
Algorithm 3.
Õ((n + k)√p) rank queries

n = #elements, k = #matroids p = solution size

<u>Result</u>

Three fast algorithms for matroid partition

- Algorithm 1.
 Õ(kn√p) independence queries
 Algorithm 2.
 Õ(k1/3mm + km) independence queries
 - $\tilde{O}(k^{1/3}np + kn)$ independence queries
- Algorithm 3.

 $\widetilde{O}((n+k)\sqrt{p})$ rank queries

A new approach Edge Recycling Augmentation

<u>Outline</u>

Summary

- Preliminaries
 - -Matroid
 - -Matroid Intersection
 - -Matroid Partition

Result

-Faster Matroid Partition Algorithms

•<u>Idea</u>

- -Blocking Flow
- -Edge Recycling Augmentation

Conclusion

Matroid $\mathcal{M} = (V, \mathcal{I})$

Def

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^{V}$ such that

• $S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$

•
$$S,T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S - T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$$

 $\mathcal{I} = \text{linearly independent}$

Matroid $\mathcal{M} = (V, \mathcal{I})$

<u>Def</u>

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^{V}$ such that

• $S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$

•
$$S,T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S - T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$$

Algorithm accesses a matroid through an **oracle**

Matroid $\mathcal{M} = (V, \mathcal{I})$

Def

A finite set V and non-empty family of **independent** sets $\mathcal{I} \subseteq 2^{V}$ such that

• $S' \subseteq S \in \mathcal{I} \implies S' \in \mathcal{I}$

•
$$S, T \in \mathcal{I}, |S| > |T| \Longrightarrow \exists e \in S - T \text{ s.t. } T \cup \{e\} \in \mathcal{I}$$

Algorithm accesses a matroid through an **oracle**

• Independence oracle query: Is $S \in \mathcal{I}$?

Matroid Intersection

Input : two matroids $\mathcal{M}_1 = (V, \mathcal{I}_1), \mathcal{M}_2 = (V, \mathcal{I}_2)$ Find : maximum **common independent set** $S \in \mathcal{I}_1 \cap \mathcal{I}_2$

E.g. Bipartite Matching

V = edges $J_1 = each left vertex has at most 1 edge$ $J_2 = each right vertex has at most 1 edge$

Edmonds' Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

<u>Algorithm for Matroid Intersection</u>

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Prior Work on Matroid Intersection

Independence query complexity

1970s	Edmonds, Lawler, Aigner-Dowling	$O(nr^2)$
1986	Cunningham	$O(nr^{3/2})$
2015	Lee-Sidford-Wong	$\tilde{O}(n^2)$
2019	Nguyễn, Chakrabarty-Lee-Sidford-Singla-Wong	$\tilde{O}(nr)$
2021	Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai	$\tilde{O}(n^{9/5})$
2021	Blikstad	$\tilde{O}(nr^{3/4})$

n = |V|, r = solution size

Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Tool for Faster Matroid Intersection

[Nguy \tilde{e} n 2019, Chakrabarty et al. 2019]

Input :
$$\mathcal{M} = (V, \mathcal{I}), S \in \mathcal{I}, v \in V \setminus S, B \subseteq S$$

Find : $u \in B$ s.t. $S - u + v \in \mathcal{I}$

Tool for Faster Matroid Intersection

 $[Nguy\tilde{e}n 2019, Chakrabarty et al. 2019]$

Input :
$$\mathcal{M} = (V, \mathcal{I}), S \in \mathcal{I}, v \in V \setminus S, B \subseteq S$$

Find : $u \in B$ s.t. $S - u + v \in \mathcal{I}$

O(log|B|) independence query using **binary search**

Tool for Faster Matroid Intersection

 $[Nguy\tilde{e}n 2019, Chakrabarty et al. 2019]$

Matroid Partition

Input : *k* matroids $\mathcal{M}_1 = (V, \mathcal{I}_1), \dots, \mathcal{M}_k = (V, \mathcal{I}_k)$ Find : maximum partitionable set $S \subseteq V$

There exists a partition $S = S_1 \cup \cdots \cup S_k$ s.t. $S_i \in \mathcal{I}_i$

Matroid Partition

Input : *k* matroids $\mathcal{M}_1 = (V, \mathcal{I}_1), ..., \mathcal{M}_k = (V, \mathcal{I}_k)$ Find : maximum **partitionable** set $S \subseteq V$

There exists a partition $S = S_1 \cup \cdots \cup S_k$ s.t. $S_i \in \mathcal{I}_i$

E.g. *k*-forest

Find a maximum-size union of k forests

Matroid Partition and Matroid Intersection

Matroid partition can be solved by the reduction to matroid intersection $\mathbb{P}^{\mathbb{P}}$ Intersection of two matroids on $V \times \{1, ..., k\}$

Matroid Partition and Matroid Intersection

Matroid partition can be solved by the reduction to matroid intersection $\mathbb{P}^{\mathbb{P}}$ Intersection of two matroids on $V \times \{1, ..., k\}$

Edmonds' Algorithm for Matroid Partition

[Edmonds 1968]

Algorithm for Matroid Partition

[Edmonds 1968]

Compressed exchange graph $G(S_1, ..., S_k)$

Prior Work on Matroid Partition

Independence query Complexity

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$

$$n = |V|, k = #matroids$$

 $p = solution size$

Prior Work on Matroid Partition

Independence query Complexity

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$
2023	This work	$\widetilde{O}(kn\sqrt{p})$
2023	This work	$\widetilde{O}(k^{1/3}np+kn)$

$$n = |V|, k = #matroids$$

 $p = solution size$

Prior Work on Matroid Partition

Independence query complexity

1968	Edmonds	$O(np^2 + kn)$
1986	Cunningham	$O(np^{3/2} + kn)$
2023	This work	$\widetilde{O}(kn\sqrt{p})$
2023	This work	$\widetilde{O}(k^{1/3}np+kn)$

n = |V|, k = #matroidsp = solution size

Thm1

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

$$n = |V|, k = #matroids$$

 $p = solution size$

<u>Thm1</u>

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

Idea

Blocking Flow [Cunningham 1986] akin to Hopcroft-Karp / Dinic

Binary Seach

[Nguyễn 2019, Chakrabarty et al. 2019]

Finding **multiple** augmenting paths **of the same length** in one phase

<u>Thm1</u>

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

<u>Algorithm</u>

Repeat:

Step 1: Breadth First Search Step 2: Find multiple augmenting paths

<u>Thm1</u>

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

<u>Algorithm</u>

Repeat:

Step 1: Breadth First Search $\overleftarrow{O}(kn)$ queriesStep 2: Find multiple augmenting paths $\overleftarrow{O}(kn)$ queries

Fact: $\Theta(\sqrt{p})$ phases are required

<u>Thm1</u>

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

<u>Thm1</u>

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

Despite of **binary search** technique, Alg. 1 is worse than [Cun 86].

<u>Thm1</u>

Matroid partition can be solved using $\tilde{O}(kn\sqrt{p})$ independence queries

Despite of binary search technique, Alg. 1 is worse than [Cun 86].

Q. Better Algorithm when k is large ?

Algorithm 2

<u>Thm2</u>

Matroid partition can be solved using $\tilde{O}(k^{1/3}np + kn)$ independence queries

$$n = |V|, k = #matroids$$

 $p = solution size$

O(**np**) queries

<u>Thm2</u>

Matroid partition can be solved using $\tilde{O}(k^{1/3}np + kn)$ independence queries

Thm2

Matroid partition can be solved using $\tilde{O}(k^{1/3}np + kn)$ independence queries

Step 1. Apply **Blocking Flow** (Algorithm 1)

<u>Thm2</u>

Matroid partition can be solved using $\tilde{O}(k^{1/3}np + kn)$ independence queries

Step 1. Apply Blocking Flow (Algorithm 1)

Step 2. Apply Edge Recycling Augmentation

Thm2

Matroid partition can be solved using $\tilde{O}(k^{1/3}np + kn)$ independence queries

Step 1. Apply **Blocking Flow** (Algorithm 1) in $\Theta(\frac{p}{k^{2/3}})$ phases

Step 2. Apply Edge Recycling Augmentation

<u>Thm2</u>

Matroid partition can be solved using $\tilde{O}(k^{1/3}np + kn)$ independence queries

Step 1. Apply Blocking Flow (Algorithm 1) in $\Theta(\frac{p}{k^{2/3}})$ phases

Step 2. Apply Edge Recycling Augmentation

Lemma: $\Theta(k^{1/3})$ phases are required in Step 2

<u>Thm2</u>

Matroid partition can be solved using $\tilde{O}(k^{1/3}np + kn)$ independence queries

Step 1. Apply Blocking Flow (Algorithm 1) in $\Theta(\frac{p}{r^{2/3}})$ phases

One phase uses $\tilde{O}(kn)$ queries

Step 2. Apply Edge Recycling Augmentation

One phase uses $\tilde{O}(np)$ queries

Lemma: $\Theta(k^{1/3})$ phases are required in Step 2

Improve the independence query complexity of Matroid Partition

Use Binary Search Technique [Nguyễn 2019, Chakrabarty et al. 2019]
 A new approach: Edge Recycling Augmentation

Q. Further improvement?

Q. Apply an idea of Edge Recycling Augmentation to other problems?