Faster Matroid Partition Algorithms

Tatsuya Terao
Kyoto University
ICALP 2023 @Paderborn July 14, 2023

Summary

Result

Three fast algorithms for matroid partition

- Algorithm 1.
$\widetilde{O}(k n \sqrt{p})$ independence queries
- Algorithm 2.
$\widetilde{0}\left(k^{1 / 3} n p+k n\right)$ independence queries
- Algorithm 3.
$\widetilde{\boldsymbol{O}}((\boldsymbol{n}+\boldsymbol{k}) \sqrt{\boldsymbol{p}})$ rank queries

$n=$ \#elements, $k=$ \#matroids

$$
p=\text { solution size }
$$

Summary

Result

Three fast algorithms for matroid partition

- Algorithm 1.
$\widetilde{O}(k n \sqrt{p})$ independence queries
- Algorithm 2.
$\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{1 / 3} n p+\boldsymbol{k n}\right)$ independence queries
- Algorithm 3.

$$
\widetilde{\boldsymbol{O}}((\boldsymbol{n}+\boldsymbol{k}) \sqrt{\boldsymbol{p}}) \text { rank queries }
$$

A new approach
 Edge Recycling Augmentation

Outline

- Summary
- Preliminaries
-Matroid
-Matroid Intersection
-Matroid Partition
- Result
-Faster Matroid Partition Algorithms
- Idea
-Blocking Flow
-Edge Recycling Augmentation
Conclusion

Matroid $\mathcal{M}=(V, \mathcal{J})$

Def

A finite set V and non-empty family of independent sets $\mathcal{J} \subseteq 2^{V}$ such that

- $S^{\prime} \subseteq S \in \mathcal{J} \Rightarrow S^{\prime} \in \mathcal{J}$
$\bullet S, T \in \mathcal{J},|S|>|T| \Rightarrow \exists e \in S-T$ s.t. $T \cup\{e\} \in \mathcal{J}$

Eg. - Graphic Matroid

- Linear Matroid
\(\left[\begin{array}{llll}0 \& 1 \& 2 \& 0

3 \& 1 \& 2 \& 3

2 \& 0 \& 1 \& 3

1 \& 2 \& 3 \& 0\end{array}\right] \quad\)| $V=$ row vectors |
| :--- |
| $\mathcal{J}=$ linearly independent |

Matroid $\mathcal{M}=(V, \mathcal{J})$

Def

A finite set V and non-empty family of independent sets $\mathcal{J} \subseteq 2^{V}$ such that

- $S^{\prime} \subseteq S \in \mathcal{J} \Rightarrow S^{\prime} \in \mathcal{J}$
$\bullet S, T \in \mathcal{J},|S|>|T| \Rightarrow \exists e \in S-T$ s.t. $T \cup\{e\} \in \mathcal{J}$

Algorithm accesses a matroid through an oracle

Matroid $\mathcal{M}=(V, \mathcal{J})$

Def

A finite set V and non-empty family of independent sets $\mathcal{J} \subseteq 2^{V}$ such that

- $S^{\prime} \subseteq S \in \mathcal{J} \Rightarrow S^{\prime} \in \mathcal{J}$
$\bullet S, T \in \mathcal{J},|S|>|T| \Rightarrow \exists e \in S-T$ s.t. $T \cup\{e\} \in \mathcal{J}$

Algorithm accesses a matroid through an oracle

- Independence oracle query: Is $S \in J$?

Matroid Intersection

Input: two matroids $\mathcal{M}_{1}=\left(V, \mathcal{J}_{1}\right), \mathcal{M}_{2}=\left(V, \mathcal{J}_{2}\right)$
Find : maximum common independent set $S \in \mathcal{J}_{1} \cap \mathcal{J}_{2}$
E.g. Bipartite Matching

$$
V=\text { edges }
$$

$\boldsymbol{J}_{\mathbf{1}}=$ each left vertex has at most 1 edge
$J_{2}=$ each right vertex has at most 1 edge

Edmonds' Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Exchange graph $G(S)$

Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Exchange graph $G(S)$

Prior Work on Matroid Intersection

Independence query complexity

1970 s	Edmonds, Lawler, Aigner-Dowling	$O\left(n r^{2}\right)$
1986	Cunningham	$O\left(n r^{3 / 2}\right)$
2015	Lee-Sidford-Wong	$\tilde{O}\left(n^{2}\right)$
2019	Nguyễn, Chakrabarty-Lee-Sidford-Singla-Wong	$\tilde{O}(n r)$
2021	Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai	$\tilde{O}\left(n^{9 / 5}\right)$
2021	Blikstad	$\tilde{O}\left(n r^{3 / 4}\right)$

$$
n=|V|, r=\text { solution size }
$$

Algorithm for Matroid Intersection

[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Construct exchange graph $\boldsymbol{G}(\boldsymbol{S})$ explicitly

Tool for Faster Matroid Intersection

[Nguyễn 2019, Chakrabarty et al. 2019]

Input: $\mathcal{M}=(V, \mathcal{J}), S \in \mathcal{J}, v \in V \backslash S, B \subseteq S$
Find $: u \in B$ s.t. $S-u+v \in \mathcal{J}$

Tool for Faster Matroid Intersection

[Nguyễn 2019, Chakrabarty et al. 2019]

Input: $\mathcal{M}=(V, \mathcal{I}), S \in \mathcal{J}, v \in V \backslash S, B \subseteq S$
Find $: u \in B$ s.t. $S-u+v \in \mathcal{J}$
$\boldsymbol{O}(\boldsymbol{\operatorname { l o g } | \boldsymbol { B } |})$ independence query using binary search

Tool for Faster Matroid Intersection

[Nguyễn 2019, Chakrabarty et al. 2019]

Matroid Partition

Input: \boldsymbol{k} matroids $\mathcal{M}_{1}=\left(V, \mathcal{J}_{1}\right), \ldots, \mathcal{M}_{k}=\left(V, \mathcal{J}_{k}\right)$
Find : maximum partitionable set $\mathrm{S} \subseteq V$

There exists a partition $\boldsymbol{S}=\boldsymbol{S}_{\mathbf{1}} \cup \cdots \cup \boldsymbol{S}_{\boldsymbol{k}}$ s.t. $\boldsymbol{S}_{\boldsymbol{i}} \in \boldsymbol{J}_{\boldsymbol{i}}$

Matroid Partition

Input: \boldsymbol{k} matroids $\mathcal{M}_{1}=\left(V, \mathcal{J}_{1}\right), \ldots, \mathcal{M}_{k}=\left(V, \mathcal{J}_{k}\right)$
Find : maximum partitionable set $\mathrm{S} \subseteq V$
There exists a partition $S=S_{1} \cup \cdots \cup S_{k}$ s.t. $S_{i} \in \mathcal{J}_{i}$
E.g. k-forest

Find a maximum-size union of k forests

Matroid Partition and Matroid Intersection

Matroid partition can be solved by the reduction to matroid intersection
Intersection of two matroids on $\boldsymbol{V} \times\{\mathbf{1}, \ldots, \boldsymbol{k}\}$

Matroid Partition and Matroid Intersection

Matroid partition can be solved by the reduction to matroid intersection
Intersection of two matroids on $\boldsymbol{V} \times\{\mathbf{1}, \ldots, \boldsymbol{k}\}$

The size of ground set is $\boldsymbol{k n}$: large \square too many queries !

Edmonds' Algorithm for Matroid Partition

[Edmonds 1968]

Compressed exchange graph $\boldsymbol{G}\left(S_{1}, \ldots, S_{k}\right)$

Algorithm for Matroid Partition

[Edmonds 1968]

Compressed exchange graph $\boldsymbol{G}\left(S_{1}, \ldots, S_{k}\right)$

Prior Work on Matroid Partition

Independence query Complexity

1968	Edmonds	$O\left(n p^{2}+k n\right)$
1986	Cunningham	$O\left(n p^{3 / 2}+k n\right)$

$$
\begin{gathered}
n=|\mathrm{V}|, k=\text { \#matroids } \\
p=\text { solution size }
\end{gathered}
$$

Prior Work on Matroid Partition

Independence query Complexity

1968	Edmonds	$O\left(n p^{2}+k n\right)$
1986	Cunningham	$O\left(n p^{3 / 2}+k n\right)$
2023	This work	$\widetilde{O}(k n \sqrt{p})$
2023	This work	$\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n p}+\boldsymbol{k n}\right)$

$$
\begin{gathered}
n=|\mathrm{V}|, k=\text { \#matroids } \\
p=\text { solution size }
\end{gathered}
$$

Prior Work on Matroid Partition

Independence query complexity

1968	Edmonds	$O\left(n p^{2}+k n\right)$
1986	Cunningham	$O\left(n p^{3 / 2}+k n\right)$
2023	This work	$\widetilde{O}(\boldsymbol{k n} \sqrt{p})$
2023	This work	$\widetilde{\mathbf{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n p}+\boldsymbol{k n}\right)$

$$
\begin{gathered}
n=|\mathrm{V}|, k=\text { \#matroids } \\
p=\text { solution size }
\end{gathered}
$$

Algorithm 1: Blocking Flow + Binary Search

Thm1
Matroid partition can be solved using $\widetilde{O}(k n \sqrt{p})$ independence queries

$$
\begin{gathered}
n=|\mathrm{V}|, k=\text { \#matroids } \\
p=\text { solution size }
\end{gathered}
$$

Algorithm 1: Blocking Flow + Binary Search

Thm1
Matroid partition can be solved using $\widetilde{O}(k n \sqrt{p})$ independence queries

Idea
Blocking Flow [Cunningham 1986]
akin to Hopcroft-Karp / Dinic

Binary Seach
[Nguyễn 2019, Chakrabarty et al. 2019]

Finding multiple augmenting paths of the same length in one phase

Algorithm 1: Blocking Flow + Binary Search

Thm1
Matroid partition can be solved using $\widetilde{O}(k n \sqrt{p})$ independence queries
Algorithm
Repeat:
Step 1: Breadth First Search
Step 2: Find multiple augmenting paths

Algorithm 1: Blocking Flow + Binary Search

Thm1
Matroid partition can be solved using $\widetilde{O}(k n \sqrt{p})$ independence queries
Algorithm
Repeat:
Step 1: Breadth First Search
$\Leftarrow \widetilde{O}(k n)$ queries
Step 2: Find multiple augmenting paths $\Leftarrow \widetilde{O}(k n)$ queries

Fact: $\Theta(\sqrt{p})$ phases are required

Algorithm 1: Blocking Flow + Binary Search

Thm1
Matroid partition can be solved using $\widetilde{O}(k n \sqrt{p})$ independence queries

Algorithm 1: Blocking Flow + Binary Search

Thm1
Matroid partition can be solved using $\widetilde{O}(k n \sqrt{p})$ independence queries

Despite of binary search technique, Alg. 1 is worse than [Cun 86].

Algorithm 1: Blocking Flow + Binary Search

Thm1
Matroid partition can be solved using $\widetilde{O}(k n \sqrt{p})$ independence queries

Despite of binary search technique, Alg. 1 is worse than [Cun 86].
Q. Better Algorithm when \boldsymbol{k} is large?

Algorithm 2

Thm2
Matroid partition can be solved using $\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n} \boldsymbol{p}+\boldsymbol{k} \boldsymbol{n}\right)$ independence queries

$$
\begin{gathered}
n=|\mathrm{V}|, k=\# \text { matroids } \\
p=\text { solution size }
\end{gathered}
$$

One Phase of Edge Recycling Augmentation

```
compute all edges E*
    of G(S},\ldots,\mp@subsup{S}{k}{}
```

\square $\boldsymbol{O}(\boldsymbol{n p})$ queries

One Phase of Edge Recycling Augmentation

Algorithm 2: Hybrid Approach

Thm2
Matroid partition can be solved using $\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n p}+\boldsymbol{k n}\right)$ independence queries

Algorithm 2: Hybrid Approach

Thm2
Matroid partition can be solved using $\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n p}+\boldsymbol{k n}\right)$ independence queries
Step 1. Apply Blocking Flow (Algorithm 1)

Algorithm 2: Hybrid Approach

Thm2
Matroid partition can be solved using $\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n} \boldsymbol{p}+\boldsymbol{k} \boldsymbol{n}\right)$ independence queries
Step 1. Apply Blocking Flow (Algorithm 1)

Step 2. Apply Edge Recycling Augmentation

Algorithm 2: Hybrid Approach

Thm2
Matroid partition can be solved using $\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n} \boldsymbol{p}+\boldsymbol{k} \boldsymbol{n}\right)$ independence queries
Step 1. Apply Blocking Flow (Algorithm 1) in $\Theta\left(\frac{p}{k^{2 / 3}}\right)$ phases

Step 2. Apply Edge Recycling Augmentation

Algorithm 2: Hybrid Approach

Thm2
Matroid partition can be solved using $\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n} \boldsymbol{p}+\boldsymbol{k n}\right)$ independence queries
Step 1. Apply Blocking Flow (Algorithm 1) in $\boldsymbol{\Theta}\left(\frac{\boldsymbol{p}}{\boldsymbol{k}^{2 / 3}}\right)$ phases

Step 2. Apply Edge Recycling Augmentation

Lemma: $\boldsymbol{\Theta}\left(\boldsymbol{k}^{1 / 3}\right)$ phases are required in Step 2

Algorithm 2: Hybrid Approach

Thm2
Matroid partition can be solved using $\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{\mathbf{1 / 3}} \boldsymbol{n p}+\boldsymbol{k n}\right)$ independence queries
Step 1. Apply Blocking Flow (Algorithm 1) in $\boldsymbol{\Theta}\left(\frac{p}{\boldsymbol{k}^{2 / 3}}\right)$ phases One phase uses $\widetilde{\boldsymbol{0}}(\boldsymbol{k n})$ queries

Step 2. Apply Edge Recycling Augmentation
One phase uses $\widetilde{\boldsymbol{O}}(\boldsymbol{n p})$ queries
Lemma: $\boldsymbol{\Theta}\left(\boldsymbol{k}^{\mathbf{1 / 3}}\right)$ phases are required in Step 2

Conclusion

Improve the independence query complexity of Matroid Partition

- Use Binary Search Technique [Nguyễn 2019, Chakrabarty et al. 2019]
- A new approach: Edge Recycling Augmentation
Q. Further improvement?
Q. Apply an idea of Edge Recycling Augmentation to other problems?

