
Faster Matroid Partition
Algorithms

Tatsuya Terao
Kyoto University

ICALP 2023 @Paderborn July 14, 2023

Summary

l Algorithm 1.
!𝑶(𝒌𝒏 𝒑) independence queries

l Algorithm 2.
!𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

l Algorithm 3.
!𝑶(𝒏 + 𝒌 𝒑) rank queries

Result
Three fast algorithms for matroid partition

𝑛 = #elements, 𝑘 = #matroids
𝑝 = solution size

Summary

l Algorithm 1.
!𝑶(𝒌𝒏 𝒑) independence queries

l Algorithm 2.
!𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

l Algorithm 3.
!𝑶(𝒏 + 𝒌 𝒑) rank queries

Result
Three fast algorithms for matroid partition

A new approach
Edge Recycling Augmentation

Outline
lSummary
lPreliminaries

-Matroid
-Matroid Intersection
-Matroid Partition

lResult
-Faster Matroid Partition Algorithms

lIdea
-Blocking Flow
-Edge Recycling Augmentation

lConclusion

Matroid ℳ = 𝑉, ℐ
Def
A finite set 𝑉 and non-empty family of independent sets ℐ ⊆ 2! such that
l 𝑆" ⊆ 𝑆 ∈ ℐ ⟹ 𝑆′ ∈ ℐ
l 𝑆, 𝑇 ∈ ℐ, 𝑆 > 𝑇 ⟹ ∃ 𝑒 ∈ 𝑆 − 𝑇 s.t. T ∪ 𝑒 ∈ ℐ

l Graphic Matroid

𝑉 = edges
ℐ = forests

l Linear Matroid

𝑉 = row vectors
ℐ = linearly independent

Eg.

Matroid ℳ = 𝑉, ℐ
Def
A finite set 𝑉 and non-empty family of independent sets ℐ ⊆ 2! such that
l 𝑆" ⊆ 𝑆 ∈ ℐ ⟹ 𝑆′ ∈ ℐ
l 𝑆, 𝑇 ∈ ℐ, 𝑆 > 𝑇 ⟹ ∃ 𝑒 ∈ 𝑆 − 𝑇 s.t. T ∪ 𝑒 ∈ ℐ

Algorithm accesses a matroid through an oracle

Matroid ℳ = 𝑉, ℐ
Def
A finite set 𝑉 and non-empty family of independent sets ℐ ⊆ 2! such that
l 𝑆" ⊆ 𝑆 ∈ ℐ ⟹ 𝑆′ ∈ ℐ
l 𝑆, 𝑇 ∈ ℐ, 𝑆 > 𝑇 ⟹ ∃ 𝑒 ∈ 𝑆 − 𝑇 s.t. T ∪ 𝑒 ∈ ℐ

Algorithm accesses a matroid through an oracle
l Independence oracle query: Is 𝑆 ∈ ℐ?

Matroid Intersection
Input : two matroids ℳ# = 𝑉, ℐ# ,ℳ$ = 𝑉, ℐ$
Find : maximum common independent set 𝑆 ∈ ℐ# ∩ ℐ$

E.g. Bipartite Matching

𝑽 = edges
𝓘𝟏 = each left vertex has at most 1 edge
𝓘𝟐 = each right vertex has at most 1 edge

Edmondsʼ Algorithm for Matroid Intersection
[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Exchange graph 𝑮(𝑺)

Algorithm for Matroid Intersection
[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

Exchange graph 𝑮(𝑺)

Prior Work on Matroid Intersection

1970s Edmonds, Lawler, Aigner-Dowling 𝑂(𝑛𝑟!)
1986 Cunningham 𝑂(𝑛𝑟"/!)
2015 Lee-Sidford-Wong &𝑂(𝑛!)
2019 Nguy !̂𝑒n, Chakrabarty-Lee-Sidford-Singla-Wong &𝑂(𝑛𝑟)
2021 Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai &𝑂(𝑛$/%)
2021 Blikstad &𝑂(𝑛𝑟"/&)

𝑛 = |𝑉|, 𝑟 = solution size

Independence query complexity

Algorithm for Matroid Intersection
[Edmonds 1970, Aigner-Dowling 1971, Lawler 1975]

𝑺 − 𝒖 + 𝒗 ∈ 𝓘𝟏

𝑺 − 𝒖 + 𝒗 ∈ 𝓘$

Construct exchange graph 𝑮 𝑺 explicitly

Tool for Faster Matroid Intersection
[Nguy01𝒆n 2019, Chakrabarty et al. 2019]

Input：ℳ = 𝑉, ℐ , 𝑆 ∈ ℐ, 𝑣 ∈ 𝑉 ∖ 𝑆, 𝐵 ⊆ 𝑆
Find ：𝑢 ∈ 𝐵 s.t. 𝑆 − 𝑢 + 𝑣 ∈ ℐ

Tool for Faster Matroid Intersection
[Nguy01𝒆n 2019, Chakrabarty et al. 2019]

Input：ℳ = 𝑉, ℐ , 𝑆 ∈ ℐ, 𝑣 ∈ 𝑉 ∖ 𝑆, 𝐵 ⊆ 𝑆
Find ：𝑢 ∈ 𝐵 s.t. 𝑆 − 𝑢 + 𝑣 ∈ ℐ

𝑶 𝐥𝐨𝐠 𝑩 independence query
using binary search

Tool for Faster Matroid Intersection
[Nguy01𝒆n 2019, Chakrabarty et al. 2019]

Input：ℳ = 𝑉, ℐ , 𝑆 ∈ ℐ, 𝑣 ∈ 𝑉 ∖ 𝑆, 𝐵 ⊆ 𝑆
Find ：𝑢 ∈ 𝐵 s.t. 𝑆 − 𝑢 + 𝑣 ∈ ℐ

𝑂 log 𝐵 independence query
using binary search

☞ need not construct exchange graph 𝑮 𝑺 explicitly

Matroid Partition
Input : 𝒌matroids ℳ# = 𝑉, ℐ# , … ,ℳ' = 𝑉, ℐ'
Find : maximum partitionable set S ⊆ 𝑉

There exists a partition 𝑺 = 𝑺𝟏 ∪⋯∪ 𝑺𝒌 s.t. 𝑺𝒊 ∈ 𝓘𝒊

Matroid Partition
Input : 𝒌matroids ℳ# = 𝑉, ℐ# , … ,ℳ' = 𝑉, ℐ'
Find : maximum partitionable set S ⊆ 𝑉

There exists a partition 𝑆 = 𝑆# ∪⋯∪ 𝑆' s.t. 𝑆* ∈ ℐ*
E.g. 𝑘-forest

Find a maximum-size union of 𝑘 forests

𝒌 = 𝟐

Matroid Partition and Matroid Intersection
Matroid partition can be solved by the reduction to matroid intersection
☞ Intersection of two matroids on 𝑽 × 𝟏,… , 𝒌

Matroid Partition and Matroid Intersection
Matroid partition can be solved by the reduction to matroid intersection
☞ Intersection of two matroids on 𝑽 × 𝟏,… , 𝒌

The size of ground set is 𝒌𝒏: large too many queries !

Edmondsʼ Algorithm for Matroid Partition
[Edmonds 1968]

Compressed exchange graph 𝑮(𝑆%, … , 𝑆&)

𝑢 ∈ 𝑆*
S* − 𝑢 + 𝑣 ∈ ℐ*

𝑣 ∉ 𝑆*
S* + 𝑣 ∈ ℐ*

Algorithm for Matroid Partition
[Edmonds 1968]

Compressed exchange graph 𝑮(𝑆%, … , 𝑆&)

Prior Work on Matroid Partition

1968 Edmonds 𝑂(𝑛𝑝! + 𝑘𝑛)

1986 Cunningham 𝑂(𝑛𝑝"/! + 𝑘𝑛)

Independence query Complexity

𝑛 = |V|, 𝑘 = #matroids
𝑝 = solution size

Prior Work on Matroid Partition

1968 Edmonds 𝑂(𝑛𝑝! + 𝑘𝑛)

1986 Cunningham 𝑂(𝑛𝑝"/! + 𝑘𝑛)

2023 This work !𝑶(𝒌𝒏 𝒑)
2023 This work !𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏)

Independence query Complexity

𝑛 = |V|, 𝑘 = #matroids
𝑝 = solution size

1968 Edmonds 𝑂(𝑛𝑝! + 𝑘𝑛)
1986 Cunningham 𝑂(𝑛𝑝"/! + 𝑘𝑛)
2023 This work !𝑶(𝒌𝒏 𝒑)
2023 This work !𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏)

Independence query complexity

𝑛 = |V|, 𝑘 = #matroids
𝑝 = solution size

Prior Work on Matroid Partition

Algorithm 1: Blocking Flow + Binary Search
Thm1
Matroid partition can be solved using 1𝑶 𝒌𝒏 𝒑 independence queries

𝑛 = |V|, 𝑘 = #matroids
𝑝 = solution size

Algorithm 1: Blocking Flow + Binary Search

Blocking Flow [Cunningham 1986]

☞ akin to Hopcroft-Karp / Dinic

Thm1
Matroid partition can be solved using 1𝑶 𝒌𝒏 𝒑 independence queries

Idea

Finding multiple augmenting paths
of the same length in one phase

Binary Seach
[Nguy +̂𝑒n 2019, Chakrabarty et al. 2019]

Algorithm 1: Blocking Flow + Binary Search
Thm1
Matroid partition can be solved using 1𝑶 𝒌𝒏 𝒑 independence queries

Algorithm
Repeat:

Step 1: Breadth First Search
Step 2: Find multiple augmenting paths

Algorithm 1: Blocking Flow + Binary Search
Thm1
Matroid partition can be solved using 1𝑶 𝒌𝒏 𝒑 independence queries

Algorithm
Repeat:

Step 1: Breadth First Search !𝑶(𝒌𝒏) queries
Step 2: Find multiple augmenting paths !𝑶(𝒌𝒏) queries

Fact: 𝜣(𝒑) phases are required

Algorithm 1: Blocking Flow + Binary Search
Thm1
Matroid partition can be solved using 1𝑶 𝒌𝒏 𝒑 independence queries

Algorithm 1: Blocking Flow + Binary Search
Thm1
Matroid partition can be solved using 1𝑶 𝒌𝒏 𝒑 independence queries

Despite of binary search technique,
Alg. 1 is worse than [Cun 86].

Algorithm 1: Blocking Flow + Binary Search
Thm1
Matroid partition can be solved using 1𝑶 𝒌𝒏 𝒑 independence queries

Despite of binary search technique,
Alg. 1 is worse than [Cun 86].

Q. Better Algorithm when 𝒌 is large ?

Algorithm 2
Thm2
Matroid partition can be solved using '𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

𝑛 = |V|, 𝑘 = #matroids
𝑝 = solution size

One Phase of Edge Recycling Augmentation
𝑶(𝒏𝒑) queries

Compressed exchange graph 𝑮(𝑆!, … , 𝑆")

One Phase of Edge Recycling Augmentation

Compressed exchange graph 𝑮(𝑆!, … , 𝑆")

One Phase of Edge Recycling Augmentation

One Phase of Edge Recycling Augmentation

𝑶(𝒏𝒑) queries

One phase uses S𝑶(𝒏𝒑) queries

One Phase of Edge Recycling Augmentation

Algorithm 2: Hybrid Approach
Thm2
Matroid partition can be solved using '𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

Algorithm 2: Hybrid Approach
Thm2
Matroid partition can be solved using '𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

Step 1. Apply Blocking Flow (Algorithm 1)

Algorithm 2: Hybrid Approach
Thm2
Matroid partition can be solved using '𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

Step 2. Apply Edge Recycling Augmentation

Step 1. Apply Blocking Flow (Algorithm 1)

Algorithm 2: Hybrid Approach
Thm2
Matroid partition can be solved using '𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

Step 2. Apply Edge Recycling Augmentation

Step 1. Apply Blocking Flow (Algorithm 1) in 𝜣(𝒑
𝒌𝟐/𝟑

) phases

Algorithm 2: Hybrid Approach
Thm2
Matroid partition can be solved using '𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

Step 2. Apply Edge Recycling Augmentation

Step 1. Apply Blocking Flow (Algorithm 1) in 𝜣(𝒑
𝒌𝟐/𝟑

) phases

Lemma: 𝜣(𝒌𝟏/𝟑) phases are required in Step 2

Algorithm 2: Hybrid Approach
Thm2
Matroid partition can be solved using '𝑶(𝒌𝟏/𝟑𝒏𝒑 + 𝒌𝒏) independence queries

Step 2. Apply Edge Recycling Augmentation

Step 1. Apply Blocking Flow (Algorithm 1) in 𝜣(𝒑
𝒌𝟐/𝟑

) phases

One phase uses S𝑶(𝒌𝒏) queries

One phase uses S𝑶(𝒏𝒑) queries

Lemma: 𝜣(𝒌𝟏/𝟑) phases are required in Step 2

Conclusion

Q. Further improvement?
Q. Apply an idea of Edge Recycling Augmentation to other problems?

Improve the independence query complexity of Matroid Partition

lUse Binary Search Technique [Nguy Â𝑒n 2019, Chakrabarty et al. 2019]
lA new approach: Edge Recycling Augmentation

