Parameterized Quantum Query Algorithms for Graph Problems

Tatsuya Terao¹, Ryuhei Mori²

1. Kyoto University 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

Parameterized Quantum Query Algorithms for Graph Problems

vertex cover and matching

Tatsuya Terao¹, Ryuhei Mori²

1. Kyoto University 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

kernelization and augmenting paths

Parameterized Quantum Query Algorithms for Graph Problems

vertex cover and matching

Tatsuya Terao¹, Ryuhei Mori²

1. Kyoto University 2. Nagoya University

ESA 2024 @Egham Sep 4, 2024

Query Complexity

Given f as an oracle ! $\left| f: \{1, ..., N\} \to \{0, 1\} \right|$

Oracle O_f

☞ Query Complexity = # of queries to oracle

Input : Oracle access to $f: \{1, ..., N\} \to \{0, 1\}$ Output : $i \in \{1, ..., N\}$ s.t. $f(i) = 1$

Input : Oracle access to $f: \{1, ..., N\} \rightarrow \{0, 1\}$ Output : $i \in \{1, ..., N\}$ s.t. $f(i) = 1$

 $\Theta(N)$ queries with error prob. at most 1/3

Input : Oracle access to $f: \{1, ..., N\} \to \{0, 1\}$ Output : $i \in \{1, ..., N\}$ s.t. $f(i) = 1$

 $\Theta(N)$ queries with error prob. at most 1/3

Classical IQuantum

```
O(\sqrt{N}) queries with error prob.
at most 1/3 [Grover '96]
```
Lower Bound: $\Omega(\sqrt{N})$ [Bennett-Bernstein-Brassard-Vazirani '97]

Input : Oracle access to $f: \{1, ..., N\} \rightarrow \{0, 1\}$ Output : $i \in \{1, ..., N\}$ s.t. $f(i) = 1$

 $\Theta(N)$ queries with error prob. at most 1/3

Quantum Query Complexity for Graph Problems

Adjacency Matrix Model Quantum oracle access to E_M : {1, ..., n } \times {1, ..., n } \to {0, 1}

 $E_M(u, v) = 1 \Leftrightarrow (u, v) \in E(G)$

$$
n = \text{# of vertices}
$$

Even through classical algorithms require $\Theta(n^2)$ queries, ...

- **Connectivity :** $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching: $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

$$
n = \text{# of vertices}
$$

- **Connectivity**: $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching: $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

Can we achieve $O(n^{2-\epsilon})$ for other problems such as Vertex Cover, Hamiltonian Path, and Clique ?

$$
n = \text{# of vertices}
$$

- **Connectivity :** $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching: $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

Can we achieve $O(n^{2-\epsilon})$ for other problems such as Vertex Cover, Hamiltonian Path, and Clique ?

Consider Parameterized Complexity !

$$
n = \text{# of vertices}
$$

- **Connectivity :** $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching: $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

Can we achieve $O(n^{2-\epsilon})$ for other problems such as Vertex Cover, Hamiltonian Path, and Clique ?

Consider Parameterized Complexity !

• *k*-clique: $\widetilde{\boldsymbol{O}}(n^{2-2/k})$ [Magniez-Santha-Szegedy '05]

$$
n = \text{# of vertices}
$$

- **Connectivity :** $\Theta(n^{3/2})$ [Dürr-Heiligman-Høyer-Mhalla '06]
- Maximum Matching: $O(n^{7/4})$ [Kimmel-Witter '21], $\Omega(n^{3/2})$ [Zhang '04]
- Minimum Cut : $\Theta(n^{3/2})$ [Apers-Lee '21]

Can we achieve $O(n^{2-\epsilon})$ for other problems such as Vertex Cover, Hamiltonian Path, and Clique ?

Consider Parameterized Complexity !

• *k*-clique : $\widetilde{\boldsymbol{O}}(n^{2-2/k})$ [Magniez-Santha-Szegedy '05]

 $k:$ constant

 $\frac{1}{2}$

 $k: \text{large}$ (e.g., $k = \Theta(\log n)$, $k = \Theta(\sqrt{n})$)

$$
n = \text{# of vertices}
$$

k -vertex cover problem

Input : an undirected graph G and an interger k Find : a vertex cover $S \subseteq V$ of size at most k

every edge of G has at least one endpoint in S

-vertex cover problem

Input : an undirected graph G and an interger k Find : a vertex cover $S \subseteq V$ of size at most k

-vertex cover problem

Input : an undirected graph G and an interger k Find : a vertex cover $S \subseteq V$ of size at most k

k -vertex cover problem

Input : an undirected graph G and an interger k Find : a vertex cover $S \subseteq V$ of size at most k

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

Thm.

Quantum Query Complexity to find a vertex cover of size at most k Upper Bound : $O(\sqrt{kn} + k^{3/2}\sqrt{n})$ FPT-like complexity, i.e., $O(f(k) \cdot n^{2-\epsilon})$ lower bound for the minimum vertex cover problem n^2 $n^{3/2}$ $\sqrt{k}n+k^{3/2}\sqrt{n}\Bigr)$ \boldsymbol{n} (This work) $n^{1/2}$ \boldsymbol{k} $n^{3/4}$

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

Thm.

Quantum Query Complexity to find a vertex cover of size at most k Upper Bound: $O(\sqrt{kn} + k^{3/2}\sqrt{n})$ FPT-like complexity, i.e., $O(f(k) \cdot n^{2-\epsilon})$ lower bound for the minimum vertex cover problem B $k:$ constant $n^{3/2}$ $k: \text{large}$ (e.g., $k = \Theta(\log n)$, $k = \Theta(\sqrt{n})$) 3 \boldsymbol{n} (This work) $n^{1/2}$ \boldsymbol{k} $n^{3/4}$ $n^{1/2}$ $n^{1/4}$

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

Thm.

Quantum Query Complexity to find a vertex cover of size at most k Upper Bound: $O(\sqrt{kn} + k^{3/2}\sqrt{n})$ Lower Bound: $\Omega(\sqrt{k}n)$ (when $k \leq (1 - \epsilon)n$)

Our Contribution 1. Parameterized Quantum Query Complexity for Vertex Cover

Thm.

Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : $O(\sqrt{kn} + k^{3/2}\sqrt{n})$ Lower Bound: $\Omega(\sqrt{k}n)$ (when $k \leq (1 - \epsilon)n$)

Significance n^2 lower bound for the minimum vertex cover problem \bullet UB $\mathcal{O}(n^2)$, LB $\Omega(n^{3/2})$ [Zhang '04] $n^{3/2}$ were only known for minimum $\left(\sqrt{ k}n + k^{3/2} \sqrt{n} \right)$ vertex cover \boldsymbol{n} Consider Parameterized ver. (This work) (This work) $n^{1/2}$ Technique $n^{1/2}$ **Quantum Query Kernelization** $n^{1/4}$ $n^{3/4}$

Kernelization

Input: instance (G, k) Output: another equivalent small instance (G', k') , or conclude that (G, k) is a Yes-instance or a No-instance kernel

 \bullet (G, k) is a Yes instance \Leftrightarrow (G', k') is a Yes instance • $E(G') \leq f(k)$ \bullet $k' \leq g(k)$

Buss-Goldsmith's Kernelization for k -vertex cover

<u>Rule 1.</u> If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

Buss-Goldsmith's Kernelization for k -vertex cover Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$ <u>Rule 2.</u> If G has a vertex v of **degree at least** $k + 1$, then

If v is not in a vertex cover, then it must contain all neighbors of v .

Buss-Goldsmith's Kernelization for k -vertex cover Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$ Rule 2. If G has a vertex v of degree at least $k + 1$, then $(G, k) \rightarrow (G - v, k - 1)$

v must be in any vertex cover of size at most k .

Buss-Goldsmith's Kernelization for k -vertex cover

Rule 1. If G has an isolated vertex v, then $(G, k) \rightarrow (G - v, k)$

<u>Rule 2.</u> If G has a vertex v of degree at least $k + 1$, then $(G, k) \rightarrow (G - v, k - 1)$

v must be in any vertex cover of size at most k .

Fact: After Applying Rules 1 and 2, if $|E(G)| > k^2$, then (G, k) is a No instance

New Approach: Quantum Query Kernelization

Input: Oracle access to (G, k)

Output: another equivalent instance (G', k') as a bit string, or conclude that (G, k) is a Yes-instance or a No-instance

 \bullet (G, k) is a Yes instance \Leftrightarrow (G', k') is a Yes instance

New Approach: Quantum Query Kernelization

Input: Oracle access to (G, k)

Output: another equivalent instance (G', k') as a bit string, or conclude that (G, k) is a Yes-instance or a No-instance

 \bullet (G, k) is a Yes instance \Leftrightarrow (G', k') is a Yes instance

☞ After Applying quantum query kernelization, just apply classical algorithm for $(G', k').$

Step1 Find a maximal matching M

Step1 Find a maximal matching M if $|M| > k$: then No instance

 E All edges touch an endpoint of an edge in M !

Step1 Find a maximal matching M if $|M| > k$: then No instance

Step2 Apply Rule 2 only for endpoints of edges in M

<u>Rule 2.</u> If G has a vertex v of degree at least $k + 1$, then $(G, k) \rightarrow (G - v, k - 1)$

Step1 Find a maximal matching M if $|M| > k$: then No instance

Step2 Apply Rule 2 only for endpoints of edges in M

<u>Rule 2.</u> If G has a vertex v of degree at least $k + 1$, then $(G, k) \rightarrow (G - v, k - 1)$

Lem: After Step1 and 2, $|E(G)| \leq 2k^2$

a matching of size at least $k + 1$ Step1 Find a maximal matching M of size at most k Step2 For each $v \in V(M)$: all endpoints of edges in M if (degree of v) > k: then remove v , $k \leftarrow k - 1$ else: find all edges incident to v using Grover's search \bullet

- a matching of size at least $k + 1$ a maximal matching M of size at most k Step1 Find
- Step2 For each $v \in V(M)$: if (degree of v) > k: then remove v , $k \leftarrow k - 1$ else: find all edges incident to v using Grover's search

Obtain an equivalent instance as a bit string !

- a matching of size at least $k + 1$
- a maximal matching M of size at most k Step1 Find
- Step2 For each $v \in V(M)$: if (degree of v) > k: then remove v , $k \leftarrow k - 1$ else: find all edges incident to v using Grover's search

$$
\left(\begin{matrix} 1 \\ 1 \\ 1 \end{matrix}\right)
$$

Lem: Step2 uses $O(k^{3/2}\sqrt{n})$ queries

Step2 For each $v \in V(M)$: if (degree of v) > k: then remove v , $k \leftarrow k - 1$ else: find all edges incident to v using Grover's search $\sqrt{a^{2}/2}\sqrt{n}$ queries

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{kn} + k^2)$ Lower Bound: $\Omega(\sqrt{kn})$

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{kn} + k^2)$ Lower Bound: $\Omega(\sqrt{kn})$

Optimal complexity $\Theta(\sqrt{kn})$ when $k = O(n^{2/3})$

Our Contribution 2. Parameterized Quantum Query Complexity for Matching

Thm.

Quantum Query Complexity to find a matching of size at least k

Upper Bound : $O(\sqrt{kn} + k^2)$ Lower Bound: $\Omega(\sqrt{k}n)$

Significance

- \bullet UB $O(n^{7/4})$ [Kimmel-Witter '21], LB $\Omega(n^{3/2})$ [Zhang '04] were only known for maximum matching
- l Consider Parameterized ver.

Technique

- augmenting paths
- quantum query kernelization idea

Conclusion

- Consider Parameterized Quantum Query Complexities
- n Obtain Optimal Parameterized Quantum Query Complexities for vertex cover and matching when the parameters are not so large.

Conclusion

- Consider Parameterized Quantum Query Complexities
- n Obtain Optimal Parameterized Quantum Query Complexities for vertex cover and matching when the parameters are not so large.

Message ☞ By making smart use of classical techniques such as kernelization, we can improve quantum query complexities !

Appendix

Quantum Query Algo for k-matching a matching of size at least $k + 1$ a maximal matching of size at most k Step1 Find or \sqrt{a} or

maximal matching M

Quantum Query Algo for k-matching a matching of size at least $k + 1$ $\sqrt{}$ $\bm{o}(\sqrt{k}\bm{n})$ queries Step1 Find a maximal matching M of size at most k Repeatedly find an augmenting path and augment along it Step2 augmenting path Lem: v_{Ω} Step2 uses $O(k^2)$ queries + $|v_3|$ v_{6} amoritized $O(\sqrt{n})$ queries per one

augmentation

maximal matching M

 v_{5}

 $|v_4\>$

