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Query Complexity

𝒇: {𝟏, … ,𝑵} → {𝟎, 𝟏}Given 𝒇 as an oracle !

Oracle 𝓞𝒇



Query Complexity

Algorithm

Oracle 𝓞𝒇

output 𝒇 𝒊

ask 𝒇 𝒊

☞ Query Complexity = # of queries to oracle

𝒇: {𝟏, … ,𝑵} → {𝟎, 𝟏}

property of 𝒇



Quantum Algo

Quantum Oracle 𝓞𝒇

|𝑖, 𝑏 ⊕ 𝒇 𝒊 ⟩

|𝒊, 𝑏⟩

Quantum Query Complexity

☞ Query Complexity = # of 𝓞𝒇

𝒇: {𝟏, … ,𝑵} → {𝟎, 𝟏}

property of 𝒇



Quantum Algo

Quantum Oracle 𝓞𝒇

Quantum Query Complexity

☞ Query Complexity = # of 𝓞𝒇

𝒇: {𝟏, … ,𝑵} → {𝟎, 𝟏}

+
!

𝛼! |𝒊, 𝑏⟩

+
!

𝛼! |𝑖, 𝑏 ⊕ 𝒇 𝒊 ⟩

property of 𝒇



Grover’s Algorithm
Input : Oracle access to 𝒇: 𝟏, … ,𝑵 → {𝟎, 𝟏}
Output : 𝑖 ∈ {1, … , 𝑁} s.t. 𝑓 𝑖 = 1



Grover’s Algorithm

𝚯 𝑵 queries
with error prob. at most 1/3

QuantumClassical

Input : Oracle access to 𝒇: 𝟏, … ,𝑵 → {𝟎, 𝟏}
Output : 𝑖 ∈ {1, … , 𝑁} s.t. 𝑓 𝑖 = 1



Grover’s Algorithm

Lower Bound: 𝛀 𝑵
[Bennett-Bernstein-Brassard-Vazirani ’97]

𝑶 𝑵 queries with error prob. 
at most 1/3     [Grover ’96]

𝚯 𝑵 queries
with error prob. at most 1/3

QuantumClassical

Input : Oracle access to 𝒇: 𝟏, … ,𝑵 → {𝟎, 𝟏}
Output : 𝑖 ∈ {1, … , 𝑁} s.t. 𝑓 𝑖 = 1



Grover’s Algorithm

Lower Bound: 𝛀 𝑵
[Bennett-Bernstein-Brassard-Vazirani ’97]

𝑶 𝑵 queries with error prob. 
at most 1/3     [Grover ’96]

Limitation of Quantum Algo

Classical-Quantum Separation !

𝚯 𝑵 queries
with error prob. at most 1/3

QuantumClassical

Input : Oracle access to 𝒇: 𝟏, … ,𝑵 → {𝟎, 𝟏}
Output : 𝑖 ∈ {1, … , 𝑁} s.t. 𝑓 𝑖 = 1



Quantum Query Complexity for Graph Problems

Adjacency Matrix Model
Quantum oracle access to 𝐸": 1, … , 𝑛 × 1,… , 𝑛 → {0, 1}

𝑛 = # of vertices

𝑬𝑴 𝒖, 𝒗 = 𝟏 ⇔ 𝒖, 𝒗 ∈ 𝑬(𝑮)



Previous Works on Query Complexity

l Connectivity : 𝚯(𝒏𝟑/𝟐) [Dürr-Heiligman-Høyer-Mhalla ’06]

Even through classical algorithms require 𝚯(𝒏𝟐) queries, …

l Maximum Matching : 𝑶(𝒏𝟕/𝟒) [Kimmel-Witter ’21],  Ω(𝑛(/)) [Zhang ’04]

l Minimum Cut : 𝚯(𝒏𝟑/𝟐) [Apers-Lee ’21]

𝑛 = # of vertices
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Can we achieve 𝑶(𝒏𝟐*𝝐) for other problems 
such as Vertex Cover, Hamiltonian Path, and Clique ?
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Previous Works on Query Complexity
l Connectivity : 𝚯(𝒏𝟑/𝟐) [Dürr-Heiligman-Høyer-Mhalla ’06]

l Maximum Matching : 𝑶(𝒏𝟕/𝟒) [Kimmel-Witter ’21],  Ω(𝑛(/)) [Zhang ’04]

l Minimum Cut : 𝚯(𝒏𝟑/𝟐) [Apers-Lee ’21]

𝑛 = # of vertices

Can we achieve 𝑶(𝒏𝟐*𝝐) for other problems 
such as Vertex Cover, Hamiltonian Path, and Clique ?

Consider Parameterized Complexity !
l 𝑘-clique : D𝑶(𝒏𝟐 *𝟐/𝒌) [Magniez-Santha-Szegedy ’05]

𝑘 : constant
𝑘 : large  (e.g., 𝑘 = Θ log 𝑛 , 𝑘 = Θ( 𝑛))

😋
😰



𝑘-vertex cover problem
Input : an undirected graph 𝐺 and an interger 𝑘
Find : a vertex cover 𝑆 ⊆ 𝑉 of size at most 𝑘

every edge of 𝐺 has at least one endpoint in 𝑆

e.g.)



𝑘-vertex cover problem
Input : an undirected graph 𝐺 and an interger 𝑘
Find : a vertex cover 𝑆 ⊆ 𝑉 of size at most 𝑘

Classical time complexity NP-hard FPT

𝑓 𝑘 ⋅ poly 𝑛

unparameterized parameterized
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Classical time complexity

Quantum query complexity

NP-hard FPT
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𝑶(𝒏𝟐) is only known ??



𝑘-vertex cover problem
Input : an undirected graph 𝐺 and an interger 𝑘
Find : a vertex cover 𝑆 ⊆ 𝑉 of size at most 𝑘

Classical time complexity

Quantum query complexity

NP-hard FPT

unparameterized parameterized

𝑶(𝒏𝟐) is only known ??

This work: FPT-like quantum query complexity, i.e., 𝑶(𝒇 𝒌 ⋅ 𝒏𝟐*𝝐)



Our Contribution 1. Parameterized Quantum   
Query Complexity for Vertex Cover

Thm.
Quantum Query Complexity to find a vertex cover of size at most 𝑘
Upper Bound：𝑶( 𝒌𝒏 + 𝒌𝟑/𝟐 𝒏)

FPT-like complexity, i.e., 𝑶(𝒇 𝒌 ⋅ 𝒏𝟐*𝝐)
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Our Contribution 1. Parameterized Quantum   
Query Complexity for Vertex Cover

Thm.
Quantum Query Complexity to find a vertex cover of size at most 𝑘
Upper Bound：𝑶( 𝒌𝒏 + 𝒌𝟑/𝟐 𝒏)
Lower Bound : 𝛀( 𝒌𝒏) (when 𝑘 ≤ 1 − 𝜖 𝑛)

Optimal complexity 
𝚯( 𝒌𝒏) when 𝒌 = 𝑶( 𝒏)



Our Contribution 1. Parameterized Quantum   
Query Complexity for Vertex Cover

Thm.
Quantum Query Complexity to find a vertex cover of size at most 𝑘
Upper Bound：𝑶( 𝒌𝒏 + 𝒌𝟑/𝟐 𝒏)
Lower Bound : 𝛀( 𝒌𝒏) (when 𝑘 ≤ 1 − 𝜖 𝑛)

Technique
l Quantum Query Kernelization

Significance
l UB 𝑶 𝒏𝟐 , LB 𝛀(𝒏𝟑/𝟐) [Zhang ’04]

were only known for minimum 
vertex  cover

l Consider Parameterized ver.



Kernelization
Input：instance (𝐺, 𝑘)
Output： another equivalent small instance (𝐺-, 𝑘′), 

or conclude that (𝐺, 𝑘) is a  Yes-instance or a No-instance

l 𝑮, 𝒌 is a Yes instance ⇔ 𝑮!, 𝒌! is a Yes instance
l 𝑬(𝑮!) ≤ 𝒇 𝒌
l 𝒌! ≤ 𝒈 𝒌

kernel



Buss-Goldsmith’s Kernelization for 𝑘-vertex cover 
Rule 1. If 𝐺 has  an isolated vertex 𝑣, then 𝑮, 𝒌 → (𝑮 − 𝒗, 𝒌)



Buss-Goldsmith’s Kernelization for 𝑘-vertex cover 
Rule 1. If 𝐺 has  an isolated vertex 𝑣, then 𝐺, 𝑘 → (𝐺 − 𝑣, 𝑘)

Rule 2. If 𝐺 has a vertex 𝑣 of degree at least 𝒌 + 𝟏, then   

If 𝒗 is not in a vertex cover, 
then it must contain all 

neighbors of 𝒗. 



Buss-Goldsmith’s Kernelization for 𝑘-vertex cover 
Rule 1. If 𝐺 has  an isolated vertex 𝑣, then 𝐺, 𝑘 → (𝐺 − 𝑣, 𝑘)

Rule 2. If 𝐺 has a vertex 𝑣 of degree at least 𝒌 + 𝟏, then   
𝑮, 𝒌 → (𝑮 − 𝒗, 𝒌 − 𝟏)

𝒗 must be in any vertex cover 
of size at most 𝒌. 



Buss-Goldsmith’s Kernelization for 𝑘-vertex cover 

Fact: After Applying Rules 1 and 2, if |𝑬 𝑮 | > 𝒌𝟐 , 
then 𝑮, 𝒌 is a No instance

Rule 1. If 𝐺 has  an isolated vertex 𝑣, then 𝐺, 𝑘 → (𝐺 − 𝑣, 𝑘)

Rule 2. If 𝐺 has a vertex 𝑣 of degree at least 𝑘 + 1, then   
𝐺, 𝑘 → (𝐺 − 𝑣, 𝑘 − 1)

𝒗 must be in any vertex cover 
of size at most 𝒌. 



New Approach: Quantum Query Kernelization
Input：Oracle access to 𝑮, 𝒌
Output：another equivalent instance 𝑮-, 𝒌- as a bit string,

or conclude that (𝐺, 𝑘) is a  Yes-instance or a No-instance

l 𝑮, 𝒌 is a Yes instance ⇔ 𝑮!, 𝒌! is a Yes instance



New Approach: Quantum Query Kernelization
Input：Oracle access to 𝑮, 𝒌
Output：another equivalent instance 𝑮-, 𝒌- as a bit string,

or conclude that (𝐺, 𝑘) is a  Yes-instance or a No-instance

l 𝑮, 𝒌 is a Yes instance ⇔ 𝑮!, 𝒌! is a Yes instance

☞ After Applying quantum query kernelization,
just apply classical algorithm for (𝑮$, 𝒌′).



Classical Kernelization Suitable for Quantum Algo



Classical Kernelization Suitable for Quantum Algo
Find a maximal matching 𝑴Step1



Classical Kernelization Suitable for Quantum Algo
Find a maximal matching 𝑴Step1
if 𝑴 > 𝒌:  then No instance



Crucial Observation

☞ All edges touch an endpoint of an edge in 𝑴 !

maximal matching 𝑴 independent set



Step2 Apply Rule 2 only for endpoints of edges in 𝑴

Rule 2. If 𝐺 has a vertex 𝑣 of degree at least 𝒌 + 𝟏, then   
𝑮, 𝒌 → (𝑮 − 𝒗, 𝒌 − 𝟏)

Find a maximal matching 𝑴Step1
if 𝑴 > 𝒌:  then No instance

Classical Kernelization Suitable for Quantum Algo



Step2 Apply Rule 2 only for endpoints of edges in 𝑴

Rule 2. If 𝐺 has a vertex 𝑣 of degree at least 𝒌 + 𝟏, then   
𝑮, 𝒌 → (𝑮 − 𝒗, 𝒌 − 𝟏)

Find a maximal matching 𝑴Step1
if 𝑴 > 𝒌:  then No instance

Classical Kernelization Suitable for Quantum Algo

Lem: After Step1 and 2, 𝑬 𝑮 ≤ 𝟐𝒌𝟐



Quantum Query Kernelization
a matching of size at least 𝑘 + 1

Lem: Step1 uses 𝑶( 𝒌𝒏) queries

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

using Grover’s search



Quantum Query Kernelization
a matching of size at least 𝑘 + 1

Lem: Step1 uses 𝑶( 𝒌𝒏) queries

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

using Grover’s search

No instance



Quantum Query Kernelization
a matching of size at least 𝑘 + 1

Lem: Step1 uses 𝑶( 𝒌𝒏) queries

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

using Grover’s search



Quantum Query Kernelization
a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2 For each 𝒗 ∈ 𝑽 𝑴 :
all endpoints of edges in 𝑴



Quantum Query Kernelization
a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2 For each 𝒗 ∈ 𝑽 𝑴 :
if (degree of 𝒗) > 𝒌: then remove 𝒗, 𝒌 ← 𝒌 − 𝟏
else: find all edges incident to 𝑣 using Grover’s search

all endpoints of edges in 𝑴



Quantum Query Kernelization
a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2 For each 𝒗 ∈ 𝑽 𝑴 :
if (degree of 𝑣) > 𝑘: then remove 𝑣, 𝑘 ← 𝑘 − 1
else: find all edges incident to 𝒗 using Grover’s search

all endpoints of edges in 𝑴



Quantum Query Kernelization
a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2 For each 𝒗 ∈ 𝑽 𝑴 :
if (degree of 𝑣) > 𝑘: then remove 𝑣, 𝑘 ← 𝑘 − 1
else: find all edges incident to 𝑣 using Grover’s search

Obtain an equivalent 
instance as a bit string !



Quantum Query Kernelization
a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2 For each 𝒗 ∈ 𝑽 𝑴 :
if (degree of 𝑣) > 𝑘: then remove 𝑣, 𝑘 ← 𝑘 − 1
else: find all edges incident to 𝑣 using Grover’s search

Lem: 
Step2 uses 𝑶(𝒌𝟑/𝟐 𝒏) queries



Quantum Query Kernelization

a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2 For each 𝒗 ∈ 𝑽 𝑴 :
if (degree of 𝑣) > 𝑘: then remove 𝑣, 𝑘 ← 𝑘 − 1
else: find all edges incident to 𝑣 using Grover’s search

𝑶(𝒌𝟑/𝟐 𝒏) queries 

𝑶 𝒌𝒏 queries 

using Grover’s search



Our Contribution 2. Parameterized Quantum   
Query Complexity for Matching

Thm.
Quantum Query Complexity to find a matching of size at least 𝑘
Upper Bound：𝑶( 𝒌𝒏 + 𝒌𝟐)
Lower Bound : 𝛀( 𝒌𝒏)



Our Contribution 2. Parameterized Quantum   
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Thm.
Quantum Query Complexity to find a matching of size at least 𝑘
Upper Bound：𝑶( 𝒌𝒏 + 𝒌𝟐)
Lower Bound : 𝛀( 𝒌𝒏)

Optimal complexity 
𝚯( 𝒌𝒏) when 𝒌 = 𝑶(𝒏𝟐/𝟑)



Our Contribution 2. Parameterized Quantum   
Query Complexity for Matching

Thm.
Quantum Query Complexity to find a matching of size at least 𝑘
Upper Bound：𝑶( 𝒌𝒏 + 𝒌𝟐)
Lower Bound : 𝛀( 𝒌𝒏)

Technique
l augmenting paths 
l quantum query kernelization idea

Significance
l UB 𝑶 𝒏𝟕/𝟒 [Kimmel-Witter '21], 

LB 𝛀(𝒏𝟑/𝟐) [Zhang ’04] were only 
known for maximum matching

l Consider Parameterized ver.



Conclusion

n Consider Parameterized Quantum Query Complexities

n Obtain Optimal Parameterized Quantum Query Complexities 
for vertex cover and matching when the parameters are not so large.



Conclusion

n Consider Parameterized Quantum Query Complexities

n Obtain Optimal Parameterized Quantum Query Complexities 
for vertex cover and matching when the parameters are not so large.

Message
☞ By making smart use of classical techniques such as 
kernelization, we can improve quantum query complexities !



Appendix



Quantum Query Algo for 𝑘-matching
a matching of size at least 𝑘 + 1

a maximal matching of size at most 𝑘
Step1 orFind 𝑶 𝒌𝒏 queries 



Quantum Query Algo for 𝑘-matching
a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2

𝑶 𝒌𝒏 queries 

Repeatedly find an augmenting path and augment along it 

|𝑴| increases by 1 !



Quantum Query Algo for 𝑘-matching
a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2

𝑶 𝒌𝒏 queries 

Repeatedly find an augmenting path and augment along it 

Lem: 
Step2 uses 𝑶(𝒌𝟐) queries + 
amoritized 𝑶( 𝒏) queries per one 
augmentation 



Quantum Query Algo for 𝑘-matching
a matching of size at least 𝑘 + 1

a maximal matching 𝑴 of size at most 𝑘
Step1 orFind

Step2

𝑶 𝒌𝒏 queries 

Repeatedly find an augmenting path and augment along it 

Lem: 
Step2 uses 𝑶(𝒌𝟐) queries + 
amoritized 𝑶( 𝒏) queries per one 
augmentation 

𝑶(𝒌𝟐 + 𝒌 𝒏) queries


