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Query Complexity

Oracle O¢

Given f as an oracle | g f:1,..,N} - 10,1}




Query Complexity
ask £(i) Oracle O¢

‘ f:{1,.., N} - {0,1)
G

v‘v output f(i)

property of f

[f@:’ Query Complexity = # of queries to oracle ]

Algorithm




Quantum Query Complexity
i, b) Quantum Oracle 0Oy

‘ f:{1,..,N} > {0,1}
Quantum Algo -
> R Y-YI0)
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[f@: Query Complexity = # of O¢ ]




Quantum Query Complexity
Z @ |t.b)  Quantum Oracle Oy

i‘ f:{1,..,N} > {0,1}
o
¥ > alib® fD)
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[f@’ Query Complexity = # of O¢ ]

Quantum Algo
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Grover's Algorithm

4 )

Input : Oracle access to f:{1,...,N} — {0,1}
3 Output:ie{l,..,N}st. f(i) =1

(Classical] Quantum]
Classical-Quantum Separation !
e
®(N) queries 0(+/N) queries with error prob.

with error prob. at most 1/3 | at most 1/3  [Grover '96]
Limitation of Quantum Algo

Lower Bound: Q(VN)

[Bennett-Bernstein-Brassard-Vazirani '97]




Quantum Query Complexity for Graph Problems

4 )
Adjacency Matrix Model

i Quantum oracle access to Ey: {1, ...,n}x{1,...,n} - {0, 1}

\
Ey(uv)=1< (u,v) € E(G)

n = # of vertices




Previous Works on Query Complexity

Even through classical algorithms require ®(n?) queries, ...
® Connectivity : @(n3/2) [Diirr-Heiligman-Heyer-Mhalla '06]
® Maximum Matching : O(n”/*) [Kimmel-Witter '21], Q(n3/2) [Zhang '04]

® Minimum Cut : ®(n3/2) [Apers-Lee '21]
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Previous Works on Query Complexity
® Connectivity : @(n3/2) [Diirr-Heiligman-Heyer-Mhalla '06]
® Maximum Ma’rching 2 0(n7/4) [Kimmel-Witter '21], Q(n3/2) [Zhang '04]

® Minimum Cut : @(n3/2) [Apers-Lee '21]

Can we achieve 0(n*~¢) for other problems
such as Vertex Cover, Hamiltonian Path, and Clique ?

Consider Parameterized Complexity |

® k-clique : 5(113_2/") [Magnhiez-Santha-Szegedy '05]
\

& k:constant .
&5 k:large (eg. k=00ogn) k=0(m) || ™= # of vertices




k-vertex cover problem

Input : an undirected graph G and an interger k
Find : a vertex cover S € V of size at most k

|

every edge of G has at least one endpoint in S

e.g.) /
\ —e

_‘

O X




k-vertex cover problem
L Input : an undirected graph G and an interger k J

Find : a vertex cover S € V of size at most k

unparameterized parameterized

NP-hard

Classical time complexity

f (k) - poly(n)
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k-vertex cover problem
L Input : an undirected graph G and an interger k J

Find : a vertex cover S € V of size at most k

unparameterized parameterized
Classical time complexity NP-hard FPT
Quantum query complexity | 0(n?) is only known 27

This work: FPT-like quantum query complexity, i.e., O(f(k) - n*~¢)




Our Contribution 1. Parameterized Quantum
Query Complexity for Vertex Cover

" Thm. A
Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : 0(Vkn + k3/2\/n) -

\_ FPT-like complexity, i.e., O(f(k) - n?7¢)

2 lower bound for the minimum vertex cover problem

/
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Our Contribution 1. Parameterized Quantum
Query Complexity for Vertex Cover

" Thm. A
Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : 0(Vkn + k3/%\/n)
._Lower Bound : Q(Vkn) (whenk < (1 —e)n) Y

2 lower bound for the minimum vertex cover problem

"3/2/\ Optimal complexity
T  o(VEn+kym) | @(/kn) when k = 0(yn)
nl/? (This work)
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Our Contribution 1. Parameterized Quantum
Query Complexity for Vertex Cover

" Thm. A
Quantum Query Complexity to find a vertex cover of size at most k

Upper Bound : 0(Vkn + k3/2\n)
._Lower Bound : Q(kn) (whenk < (1 —e)n) Y

@ignificance \ 2 lower bound for the minimum vertex cover problem

® UB 0(n?), LB Q(n3/%) [Zhang '04] - /
were only known for minimum '
vertex cover n X (\/ kn + k%y/n )

® Consider Parameterized ver. 12
\8 i Q(x/En) (This work) ¢S Work)

Technique .
® Quantum Query Kernelization |




Kernelization

- . kernel D
Input © instance (G, k) —
Output @ another equivalent small instance (G, k"),

L or conclude that (G, k) is a Yes-instance or a No-instance |

® (G, k)isaYesinstance © (G',k') is a Yes instance
® E(G') < f(k)
® k' < g(k)




Buss-Goldsmith's Kernelization for k-vertex cover

Rule 1. If G has an isolated vertex v, then (G, k) —» (G — v, k)



Buss-Goldsmith's Kernelization for k-vertex cover

Rule 1. If G has an isolated vertex v, then (G, k) » (G — v, k)
Rule 2. If G has a vertex v of degree at least k + 1, then

If vis notina vertex cover,
then it must contain all

neighbors of v. :> \—‘




Buss-Goldsmith's Kernelization for k-vertex cover

Rule 1. If G has an isolated vertex v, then (G, k) » (G — v, k)

Rule 2. If G has a vertex v of degree at least k + 1, then
(G, k) > (G —v,k—1)

v must be in any vertex cover
of size at most k.




Buss-Goldsmith's Kernelization for k-vertex cover

Rule 1. If G has an isolated vertex v, then (G, k) » (G — v, k)

Rule 2. If G has a vertex v of degree at least k + 1, then
G, k) - (G —v,k—1)

v must be in any vertex cover
of size at most k.

( Fact: After Applying Rules 1and 2, if |E(G)| > k*,
then (G, k) is a No instance

\_




New Approach: Quantum Query Kernelization

.

-
Input : Oracle access to (G, k)

Output : another equivalent instance (G', k') as a bit string,
or conclude that (G, k) is a Yes-instance or a No-instance

~

)

® (G, k)isaVYesinstance © (G',k') is a Yes instance




New Approach: Quantum Query Kernelization

p
Input : Oracle access to (G, k)
Output : another equivalent instance (G', k') as a bit string,
or conclude that (G, k) is a Yes-instance or a No-instance

.

~

)

® (G, k)isaVYesinstance © (G',k') is a Yes instance

\

= After Applying quantum query kernelization,
just apply classical algorithm for (G', k).

\_
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Classical Kernelization Suitable for Quantum Algo

Stepl Find a maximal matching M
if |[M| > k: then No instance




Crucial Observation

maximal matching M \_° independent set

[@: All edges touch an endpoint of an edge in M | J




Classical Kernelization Suitable for Quantum Algo

Stepl Find a maximal matching M
if |[M| > k: then No instance
Step2 Apply Rule 2 only for endpoints of edges in M
[ T

Rule 2. If G has a vertex v of degree at least k + 1, then
(G, k) > (6 —v,k—1)




Classical Kernelization Suitable for Quantum Algo

Stepl Find a maximal matching M
if |[M| > k: then No instance
Step2 Apply Rule 2 only for endpoints of edges in M
[T

Rule 2. If G has a vertex v of degree at least k + 1, then
(G, k) » (G —v,k—1)

[Lem: After Stepl and 2, |[E(G)| < ZkZ]




Quantum Query Kernelization

a matching of size at least k + 1
Stepl Find or

a maximal matching M of size at most k

using Grover's search

-
O

[ Lem: Stepl uses O(Vkn) queries ]
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N

all endpoints of edges in M




Quantum Query Kernelization

Stepl Find

a maximal matching M of size at most k
Step2 For each v € V(M):% all endpoints of edges in M

if (degree of v) > k: thenremove v, k « k — 1
else: find all edges incident to v using Grover's search

el
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Quantum Query Kernelization

Stepl Find

a maximal matching M of size at most k
Step2 For each v € V(M):

if (degree of v) > k: thenremove v, k <« k — 1
else: find all edges incident to v using Grover's search

Obtain an equivalent
instance as a bit string |




Quantum Query Kernelization

Stepl Find
a maximal matching M of size at most k

Step2 For each v € V(M):
if (degree of v) > k: thenremove v, k <« k — 1
else: find all edges incident to v using Grover's search

4 )
Lem:
\STepZ uses 0(k3/%\/n) queriesj




Quantum Query Kernelization

a matching of size at least k + 1
Stepl Find or & 0(Vkn) queries

a maximal matching M of size at most k
using Grover's search

Step2 For each v € V(M): {0 0(k3/%y/n) queries

if (degree of v) > k: thenremove v, k <« k — 1
else: find all edges incident to v using Grover's search



Our Contribution 2. Parameterized Quantum

Query Complexity for Matching

" Thm.
Quantum Query Complexity to find a matching of size at least k

Upper Bound : 0(Vkn + k?)
__Lower Bound : Q(Vkn)

~

n? - low‘er'bo/undfor' the maximum matching problem
n X 0, (\/’%n + kz)
(This work)

1 Q2 (\/En) (This work)

k

)
2/3 n

1 1
7’1,1/3 n



Our Contribution 2. Parameterized Quantum
Query Complexity for Matching

" Thm. A
Quantum Query Complexity to find a matching of size at least k

Upper Bound : 0(Vkn + k?)
__Lower Bound : Q(Vkn) y

n? - lower bound for the maximum matching problem

"3/2‘/ ----------- — Optimal complexity

L O(Vkn + k?) ®(Vkn) when k = 0(n?/3)

: Q(x/En) (This work) (This work)

k

)
2/3 n

1 1
7’1,1/3 n



Our Contribution 2. Parameterized Quantum
Query Complexity for Matching

" Thm. A
Quantum Query Complexity to find a matching of size at least k
Upper Bound : O(Vkn + k?)

\_Lower Bound : Q(vkn) Y

(Significance
® UB 0(n”/*) [Kimmel-Witter '21],
LB Q(n3/%) [Zhang '04] were only
known for maximum matching
\ @ Consider Parameterized ver.

~

%

 Technique
® augmenting paths

_ ® quantum query kernelization ide

~

Y

n? lower bound for the maximum matching problem

|
N O (\/‘%n + k‘))
(This work)

: Q(\/En) (This work)

k

2/3 n

1 1
nl/?’ n



Conclusion

B Consider Parameterized Quantum Query Complexities

B Obtain Optimal Parameterized Quantum Query Complexities
for vertex cover and matching when the parameters are not so large.



Conclusion

B Consider Parameterized Quantum Query Complexities

B Obtain Optimal Parameterized Quantum Query Complexities
for vertex cover and matching when the parameters are not so large.

4 )
Message

1=~ By making smart use of classical techniques such as

kernelization, we can improve quantum query complexities |
- J
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Quantum Query Algo for k-matching

a matching of size at least k + 1
Stepl Find or <= 0(Vkn) queries

a maximal matching of size at most k



Quantum Query Algo for k-matching

Stepl Find <=3 0(Vkn) queries

a maximal matching M of size at most k
Step2 Repeatedly find an augmenting path and augment along it

augmenting path

|M| increases by 1|

maximal matching M



Quantum Query Algo for k-matching

Stepl Find <=3 0(Vkn) queries

a maximal matching M of size at most k
Step2 Repeatedly find an augmenting path and augment along it

augmenting path
" Lem: A

Step2 uses 0(k*) queries +
amoritized O(/n) queries per one
\augmen’ra’rion y

maximal matching M



Quantum Query Algo for k-matching

a matching of size at least k + 1
Stepl Find or <= 0(Vkn) queries

a maximal matching M of size at most k
Step2 Repeatedly find an augmenting path and augment along it

augmenting path
" Lem: )

Step?2 uses 0(k?*) queries +
amoritized O(y/n) queries per one

_ augmentation y

0(k* + k+/n) queries

maximal matching M




